Engineering biological systems toward a sustainable bioeconomy

  • Mateus Schreiner Garcez LopesEmail author


The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.


Synthetic biology Metabolic engineering Carbon pricing Sustainability Bioeconomy 

Supplementary material

10295_2015_1606_MOESM1_ESM.xlsm (101 kb)
Supplementary material 1 (XLSM 100 kb)
10295_2015_1606_MOESM2_ESM.xlsm (100 kb)
Supplementary material 2 (XLSM 100 kb)
10295_2015_1606_MOESM3_ESM.xlsm (101 kb)
Supplementary material 3 (XLSM 101 kb)


  1. 1.
    Adler R (2014) Genomatica confirms nylon intermediates as third set of biobased processes under developmet. Available via press release Genomatica. Accessed 12 Oct 2014
  2. 2.
  3. 3.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ, Kerfeld CA, Morris RH, Peden CH, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JN, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621–6658. doi: 10.1021/cr300463y PubMedCentralPubMedGoogle Scholar
  4. 4.
    Ardao I, Zeng AP (2013) Insilico evaluation of a complex multi-enzymatic system using one-pot and modular approaches: application to the high-yield production of hydrogen from a synthetic metabolic pathway. Chem Eng Sci 87(14):183–193Google Scholar
  5. 5.
    Aresta M, Dibenedetto A, Gruyter F D (eds) (2012) Biorefinery: from biomass to chemicals and fuels. Accessed 02 June 2014
  6. 6.
    Arné M, Gairan A (2008) Greenhouse gases handbook. Sri Consulting, Process Economic Program Report, Texas, United States of AmericaGoogle Scholar
  7. 7.
    Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89. doi: 10.1038/nature06450 PubMedGoogle Scholar
  8. 8.
    Atsumi S, Higashide W, Liao JC (2009) Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat Biotechnol 27(12):1177–1180. doi: 10.1038/nbt.1586 PubMedGoogle Scholar
  9. 9.
    Bahieldin A, Gadalla NO, Al-Garni SM, Almehdar H, Noor S, Hassan SM, Shokry AM, Sabir JS, Murata N (2014) Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 72:18–28. doi: 10.1016/j.plasmid.2014.03.001 PubMedGoogle Scholar
  10. 10.
    Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675PubMedGoogle Scholar
  11. 11.
    Bajpai A, Giri A (2002) Swelling dynamics of a macromolecular hydrophilic network and evaluation of its potential for controlled release of agrochemicals. React Funct Polym 53(2):125–141Google Scholar
  12. 12.
    Báez-Viveros JL, Flores N, Juárez K, Castillo-España P, Bolivar F, Gosset G (2007) Metabolic transcription analysis of engineered Escherichiacoli strains that overproduce l-phenylalanine. Microb Cell Fact 19(6):30Google Scholar
  13. 13.
    Bar-Even A, Noor E, Lewis NE, Milo R (2010) Design and analysis of synthetic carbon fixation pathways. Proc Natl Acad Sci USA 107(19):8889–8894. doi: 10.1073/pnas PubMedCentralPubMedGoogle Scholar
  14. 14.
    Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–1196. doi: 10.1039/B802262N PubMedGoogle Scholar
  15. 15.
    Bengtsson S, Werker A, Christensson M, Welander T (2008) Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bioresour Technol 99(3):509–516PubMedGoogle Scholar
  16. 16.
    Biotechnology Industry Organization (2011) Current uses of synthetic biology. Available via BIO. Accessed 8 Nov 2014
  17. 17.
    Bogorad IW, Lin TS, Liao JC (2013) Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502(7473):693–697. doi: 10.1038/nature12575 PubMedGoogle Scholar
  18. 18.
    Boisart C, Bestel-Corre G, Barbier G, Figge R (2012) Strains and method for the production of methionine. Metab Explor (WO 2011080301 A2). Available via WIPO. Accessed 29 Mar 2015
  19. 19.
    Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485(7397):185–194. doi: 10.1038/nature11117 PubMedGoogle Scholar
  20. 20.
    Bosma L (2014) Chromatin, Inc. announces production of farnesene in sorghum. Available via Chormatin Press Release. Accessed 15 Oct 2014
  21. 21.
  22. 22.
    Brazilian Government. Available via Clean Energy Matrix. Accessed 13 Oct 2014
  23. 23.
    Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, Patil KR (2010) Improved vanillin production in baker’s yeast through in silico design. Microb Cell Fact 8(9):84. doi: 10.1186/1475-2859-9-84 Google Scholar
  24. 24.
    Burk MJ, Burgard AP, Sun J, Osterhout RE, Pharkya P (2011) Microorganisms and methods for the biosynthesis of butadiene (WO 2011140171 A2). Available via WIPO. Accessed 29 Mar 2015
  25. 25.
    Burk MJ, Burgard AP, Sun J, Osterhout RE, Pharkya P (2012) Microorganisms for producing methacrylic acid and methacrylate esters and methods related thereto (WO/2012/135789)Google Scholar
  26. 26.
    Carey JM (2012) Surprise side effect of shale gas boom: a plunge in US greenhouse gas emissions. Available via Forbes Magazine. Accessed 23 June 2014
  27. 27.
    CDP (2014). Global corporate use of carbon pricing. Available via CDP. Accessed 13 Aug 2014
  28. 28.
    Chen X, Li M, Zhou L, Shen W, Algasan G, Fan Y, Wang Z (2014) Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Bioresour Technol 166:64–71. doi: 10.1016/j.biortech.2014.05.035 PubMedGoogle Scholar
  29. 29.
    Chertow M (2000) Industrial symbiosis: literature and taxonomy. Annu Rev Energy Environ 25:313–337Google Scholar
  30. 30.
    Chertow MR, Ashton WS, Espinosa JC (2008) Industrial symbiosis in Puerto Rico: environmentally related agglomeration economies. Reg Stud 42(10):1299–1312Google Scholar
  31. 31.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 26(3):294–306Google Scholar
  32. 32.
    Choi KY, Wernick DG, Tat CA, Liao JC (2014) Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 23:53–61. doi: 10.1016/j.ymben.201402007 PubMedGoogle Scholar
  33. 33.
    Choi YJ, Lee SY (2009) SB-P13—metabolic engineering of Escherichia coli for taurine production. J Biosci Bioeng 108:91. doi: 10.1016/j.jbiosc.200908470 Google Scholar
  34. 34.
    Ciceri D, Manning DAC, Allanore A (2015) Historical and technical developments of potassium resources. Sci Total Environ 502(1):590–601PubMedGoogle Scholar
  35. 35.
    Claesen J, Fischbach MA (2014) Synthetic microbes as drug delivery systems. ACS Synth Biol (in press). doi: 10.1021/sb500258b
  36. 36.
    CME Group. Available via CME Group. Accessed 15 Feb 2014
  37. 37.
    Coca-Cola Company. An ambitious new goal: reduzing caron in our value chain. Available via Coca-Cola Company. Accessed 25 Aug 2014
  38. 38.
    Coca M, Barrocal VM, Lucas S, González-Benito G, García-Cubero MT (2014) Protein production in Spirulinaplatensis biomass using beet vinasse-supplemented culture media. Food Bioprod Process (in press). Available via Science Direct. Accessed 29 Mar 2015
  39. 39.
    Coelho PS, Arnold FH, Lewis JC (2014) 9.15 Synthetic biology approaches for organic synthesis. In: Knochel P, Molander GA (eds) Comprehensive organic synthesis II, 2rd edn. pp 390–420 (ISBN: 978-0-08-097743-0)Google Scholar
  40. 40.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi: 10.1126/science.1231143 PubMedCentralPubMedGoogle Scholar
  41. 41.
    Côte RP, Cohen-Rosenthal EC (1998) Designing eco-industrial parks: a synthesis of some experience. J Clean Prod 6:181–188Google Scholar
  42. 42.
    Dai Z, Liu Y, Huang L, Zhang X (2012) Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol Bioeng 109(11):2845–2853. doi: 10.1002/bit.24547 PubMedGoogle Scholar
  43. 43.
    Della-Bianca BE, Basso TO, Stambuck BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97(3):979–991. doi: 10.1007/s00253-012-4631-x PubMedGoogle Scholar
  44. 44.
    Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359. doi: 10.1038/nature10333 PubMedGoogle Scholar
  45. 45.
    Dhamankar H, Tarasova Y, Martin CH, Prather KL (2014) Engineering E. coli for the biosynthesis of 3-hydroxy-γ-butyrolactone (3HBL) and 3,4-dihydroxybutyricacid (3,4-DHBA) as value-addedchemicals from glucose as a sole carbon source. Metab Eng 25:72–81. doi: 10.1016/j.ymben.2014.06.004 PubMedGoogle Scholar
  46. 46.
    Diaz-Torres M, Dunn-Coleman NS, Chase WM, Trimbur D (2000) Method for the recombinant production of 1,3-propanediol. Genencor Int (US6136576)Google Scholar
  47. 47.
    Eisentraut A (2010). Sustainable production of second-generation biofuels. Available via International Energy Agency. Accessed 19 June 2014
  48. 48.
    Eisentraut A, Brown A (2012) Technology roadmap: bioenergy for heat and power. Available via International Energy Agency. Acessed 03 April 2014
  49. 49.
    Elmarzougui E, Larue B (2013) On the evolving relationship between corn and oil prices. Agribusiness 29(3):344–360. doi: 10.1002/agr.21337 Google Scholar
  50. 50.
    Elser J, Bennett E (2011) Phosphorus cycle: a broken biogeochemical cycle. Nature 478(7367):29–31. doi: 10.1038/478029a PubMedGoogle Scholar
  51. 51.
    Faaij A, van Doorn J, Curvers T, Waldheim L, Olsson E, van Wijk A, Daey-Ouwens C (1997) Characteristics and availability of biomass waste and residues in the netherlands for gasification. Biomass Bioenergy 12(4):225–240Google Scholar
  52. 52.
    Faaij A et al (2007) Potential contribution of bioenergy to the world’s future energy demand. Available via International Energy Agency. Accessed 18 Feb 2014
  53. 53.
    Fahnestock SR, Yao Z, Bedzyk LA (2000) Microbial production of spider silk proteins. J Biotechnol 74(2):105–119PubMedGoogle Scholar
  54. 54.
    Feist AM, Herrgård MJ, Thiele I, Reed JL, Palsson BO (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 2:129–143. doi: 10.1038/nrmicro1949 Google Scholar
  55. 55.
    FerrazJúnior ADN, Wenzel J, Etchebehere C, Zaiat M (2014) Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. Int J Hydrog Energy 39(30):16852–16862Google Scholar
  56. 56.
    Freund M, Mickey A (2011) Amyris adds additional production capacity through agreement with Paraíso Bioenergia. Available via Business Wire. Accessed 02 Oct 2014
  57. 57.
    Fischer CR, Sauls J, Sexton J, Shetty R, Kelly J (2012) Engineering metabolic modules for electrofuels production in proteobacteria. Available via Aiche. Accessed 27 Oct 2014
  58. 58.
    Friedrich S (2013) Raw material change in the chemical industry and the role of biomass. In: Behrens M, Datye A (ed) Catalysis for the conversion of biomass and its derivatives. Available at Creative Commons Attribution-Non Commercial-Share Alike 3.0 Germany (cc by-nc-sa 3.0) Licence. Accessed 25 Mar 2014
  59. 59.
    Fuchs G (2011) Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol 65:631–658. doi: 10.1146/annurev-micro-090110-102801 PubMedGoogle Scholar
  60. 60.
    Garamendi G (2013) Solazyme bunge renewable oils joint venture receives funding approval from brazilian development bank. Available via Solazyme Press Release. Accessed 17 Sept 2014
  61. 61.
    Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, Stockwell TB, Brownley A, Thomas DW, Algire MA, Merryman C, Young L, Noskov VN, Glass JI, Venter JC, Hutchison CA 3rd, Smith HO (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319(5867):1215–1220. doi: 10.1126/science1151721 PubMedGoogle Scholar
  62. 62.
    Goh EB, Baidoo EE, Keasling JD, Beller HR (2012) Engineering of bacterial methyl-ketone synthesis for biofuels. Appl Environ Microbiol 78(1):70–80. doi: 10.1128/AEM.06785-11 PubMedCentralPubMedGoogle Scholar
  63. 63.
    Gong Y, Wan X, Jiang M, Hu C, Hu H, Huang F (2014) Metabolic engineering of microorganisms to produce omega-3 very long-chain polyunsaturated fatty acids. Prog Lipid Res 56C:19–35. doi: 10.1016/j.plipres.201407001 Google Scholar
  64. 64.
    Guo M, Liu M, Hu Z, Zhan F, Wu L (2005) Preparation and properties of a slow release NP compound fertilizer with superabsorbent and moisture preservation. J Appl Polym Sci 96(6):2132–2138. doi: 10.1002/app21140 Google Scholar
  65. 65.
    Haynes CA, Gonzalez R (2014) Rethinking biological activation of methane and conversion to liquid fuels. Nat Chem Biol 10(5):331–339. doi: 10.1038/nchembio1509 PubMedGoogle Scholar
  66. 66.
    Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1(1):14–21. doi: 10.1021/sb2000116 PubMedGoogle Scholar
  67. 67.
    Hirsch RL, Bezdek R, Wendling R (2005) Peaking of world oil production: impacts, mitigation and risk management. Available via DOE. Accessed 7 July 2014
  68. 68.
    Hodaifa G, Martínez MA, Sánchez S (2008) Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresour Technol 99(5):1111–1117PubMedGoogle Scholar
  69. 69.
    Hotta C, Lembke CG, Domingues DS, Ochoa EA, Cruz GMQ, Melotto-Passarin DM, Marconi TG, Santos MO, Mollinari M, Margarido GRA, Crivellari AC, Santos WD, Souza AP, Hoshino AA, Carrer H, Souza AP, Garcia AAF, Buckeridge MS, Menossi M, Sluys MAV, Souza GM (2010) The biotechnology roadmap for sugarcane improvement. Trop Plant Biol 3(2):75–87. doi: 10.1007/s1204201090505 Google Scholar
  70. 70.
    Huang Q, Roessner CA, Croteau R, Scott AI (2001) Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol. Bioorg Med Chem 9(9):2237–2242. doi: 10.1016/S0968-0896(01)00072-4 PubMedGoogle Scholar
  71. 71.
    Hyder P (2008) Recycling revenue from an international carbon tax to fund an integrated investment programme in sustainable energy and poverty reduction. Glob Environ Change 18(3):521–538Google Scholar
  72. 72.
    ICIS pricing. Available via ICIS. Accessed 15 Feb 2014
  73. 73.
    iGEM 2010. BCCS—Bristol. Available via iGEM. Accessed 10 Nov 2014
  74. 74.
    iGEM 2011 Imperial College London. Available via iGEM. Accessed 10 Nov 2014
  75. 75.
    Intergovernmental Panel on Climate Change—IPCC (2014) Fifth assessment report: climate change 2013. Available via IPPC. Accessed 10 Nov 2014
  76. 76.
    Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc Natl Acad Sci USA 69(10):2904–2909PubMedCentralPubMedGoogle Scholar
  77. 77.
    Jenkins JD (2014) Political economy constraints on carbon pricing policies: what are the implications for economic efficiency, environmental efficacy, and climate policy design? Energy Pol 69:467–477Google Scholar
  78. 78.
    Johansson N, Quehl P, Norbeck J, Larsson C (2013) Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae. Microb Cell Fact 12:89. doi: 10.1186/1475-2859-12-89 PubMedCentralPubMedGoogle Scholar
  79. 79.
    Johnson IS (1983) Human insulin from recombinant DNA technology. Science 219(4585):632–637PubMedGoogle Scholar
  80. 80.
    Jung YK, Kim TY, Park SJ, Lee SY (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol Bioeng 105(1):161–171. doi: 10.1002/bit.22548 PubMedGoogle Scholar
  81. 81.
  82. 82.
    Kambourakis S, Griffin BM, Martin KV (2014) Compositions and methods for producing chemicals and derivatives thereof. Synthetic Genomics Inc (WO/2014/047510). Available via Google. Accessed 29 Mar 2015
  83. 83.
    Keasling JD (2010) Manufacturing molecules through metabolic engineering. Science 330(6009):1355–1358. doi: 10.1126/science.1193990 PubMedGoogle Scholar
  84. 84.
    Keasling JB (2012) Synthetic biology and the development of tools for metabolic engineering. Metab Eng 14(3):189–195. doi: 10.1016/j.ymben.2012.01.004 PubMedGoogle Scholar
  85. 85.
    Kind S, Kreye S, Wittmann C (2011) Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 13(5):617–627. doi: 10.1016/jymben201107006 PubMedGoogle Scholar
  86. 86.
    Klein J et al (2014) Yeast synthetic biology platform generates novel chemical structures as scaffolds for drug discovery. ACS Synth Biol 3(5):314–323. doi: 10.1021/sb400177x (Epub 2014 Jan 30)PubMedCentralPubMedGoogle Scholar
  87. 87.
    Kusakabe T, Tsuruno K, Hirokawa Y, Atsumi S, Liao JC, Hanai T (2013) Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Metab Eng 20:101–108. doi: 10.1016/jymben.201309007 PubMedGoogle Scholar
  88. 88.
    Kyte R (2014) 73 countries and over 1000 businesses speak out in support of a price on carbon. Available via: Accessed 28 Oct 2014
  89. 89.
    Lacy et al. (2014) Circular advantage: innovative business models and technologies to create value in a world without limits to growth. Accenture. Available via Accenture. Accessed 19 Sep 2014
  90. 90.
    Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363. doi: 10.1016/jymben.201104004 PubMedGoogle Scholar
  91. 91.
    Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349. doi: 10.1016/j.biortech201209104 PubMedGoogle Scholar
  92. 92.
    Lane J (2014) Earth to cellulosic ethanol: glad you’re here, what took you so long? Available via Biofuels Digest. Accessed 5 Oct 2013
  93. 93.
    Lane J (2014). Genomatica: biofuels digest’s 2014 5-minute guide. Available via Biofuels Digest. Accessed 12 Oct 2014
  94. 94.
    Lane J (2014) Biofuels digest. gevo: biofuels digest’s 2014 5-minute guide. Available via Biofuels Digest. Accessed 21 July 2014
  95. 95.
    Lange JP (2007) Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels Bioprod Biorefin 1:39–48. doi: 10.1002/9783527621118.ch2 Google Scholar
  96. 96.
    Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335(6076):1596. doi: 10.1126/science.1217643 PubMedGoogle Scholar
  97. 97.
    Lima ML, Garcia AA, Oliveira KM, Matsuoka S, Arizono H, De Souza CL Jr, De Souza AP (2002) Analysis of genetic similarity detected by AFLP and coefficient of parentage among genotypes of sugar cane (Saccharum spp.). Theor Appl Genet 104:30–38PubMedGoogle Scholar
  98. 98.
    Liu L, Lui Y, Li J, Du G, Chen J (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact 10:99. doi: 10.1186/1475-2859-10-99 PubMedCentralPubMedGoogle Scholar
  99. 99.
    Liu R, Zhu F, Lu L, Fu A, Lu J, Deng Z, Liu T (2014) Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metab Eng 22:10–21. doi: 10.1016/j.ymben.2013.12.004 PubMedGoogle Scholar
  100. 100.
    Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 6(5):577–583Google Scholar
  101. 101.
    Lopes MSG, Slovic AM, Gouvea IE, Perez JR (2012) Modified microorganisms and methods of making butadiene using same (US2012/07016). Available via Google. Accessed 29 Mar 2015
  102. 102.
    Lovley DR (2010) Powering microbes with electricity: direct electron transfer from electrodes to microbes. Microbiol Rep, Environ. doi: 10.1111/j1758-2229.201000211x Google Scholar
  103. 103.
    Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatiletool for engineering biology. Nat Methods 10(10):957–963. doi: 10.1038/nmeth.2649 PubMedCentralPubMedGoogle Scholar
  104. 104.
    Marliere P (2011) Method for enzymatic production of 3-hydroxy-S-methylbutyric acid from acetone and acetyl-CoA. WO 2011(032934):A1Google Scholar
  105. 105.
    Marliere P (2011) Production of alkenes by enzymatic decarboxylation of 3-hydroxyalkanoic acids (US2011/0165644 A1)Google Scholar
  106. 106.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14(1):217–232Google Scholar
  107. 107.
    McKenna R, Nielsen DR (2011) Styrene biosynthesis from glucose by engineered E. coli. Metab Eng 13:544–554. doi: 10.1016/j.ymben.2011.06.005 PubMedGoogle Scholar
  108. 108.
    McQualter RB et al (2005) Initial evaluation of sugarcane as a production platform for p-hydroxybenzoic acid. Plant Biotechnol J 3(1):29–41PubMedGoogle Scholar
  109. 109.
    Meyer A, Pellaux R, Panke S (2007) Bioengineering novel in vitro metabolic pathways using synthetic biology. Curr Opin Microbiol 10(3):246–253PubMedGoogle Scholar
  110. 110.
    Moraes BS, Junqueira TL, Pavanello LG, Cavalett O, Mantelatto PE, Bonomi A, Zaiat M (2014) Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: profit or expense? Appl Energy 113:825–835Google Scholar
  111. 111.
    Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. doi: 10.1128/mBio0010310 Google Scholar
  112. 112.
    Nevin KP et al (2011) Electrosynthesis of organic compounds from carbondioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882–2886. doi: 10.1128/AEM.02642-10 PubMedCentralPubMedGoogle Scholar
  113. 113.
    Nielsen J, Fussenegger M, Keasling J, Lee SY, Liao JC, Prather K, Palsson B (2014) Engineering synergy in biotechnology. Nat Chem Biol 5:319–322. doi: 10.1038/nchembio1519 Google Scholar
  114. 114.
    Novacana (2014). Available at Novacana. Accessed at 20 Dec 2014
  115. 115.
    Nozzi NE, Desai SH, Case AE, Atsumi S (2014) Metabolic engineering for higher alcohol production. Metab Eng 25:174–182. doi: 10.1016/jymben.201407007 PubMedGoogle Scholar
  116. 116.
    ONU—Caring for climate. business leadership criteria carbon pricing. Available via ONU. Accessed 12 Oct 2014
  117. 117.
    Patel T, Viscusi G (2013) France’s Fracking Ban “Absolute” after Court upholds Law. Available via Bloomberg News. Accessed 2 Aug 2014
  118. 118.
    Picataggio S, Beardslee T (2012) Biological methods for preparing adipic acid. US Patent 2013015734. Available via Google. Accessed 29 Mar 2015
  119. 119.
    Polen T, Spelberg M, Bott M (2013) Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol 167(2):75–84. doi: 10.1016/jjbiotec201207008 PubMedGoogle Scholar
  120. 120.
    Ragsdale SW, Pierce E (2008) Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation. Biochim Biophys Acta 1784(12):1873–1898. doi: 10.1016/jbbapap2008.08.012 PubMedCentralPubMedGoogle Scholar
  121. 121.
    Ramos-Vera WH, Weiss M, Strittmatter E, Kockelkorn D, Fuchs G (2011) Identification of missing genes and enzymes for autotrophic carbon fixation in crenarchaeota. J Bacteriol 193(5):1201–1211. doi: 10.1128/JB01156-10 PubMedCentralPubMedGoogle Scholar
  122. 122.
    Reeve B, Hargest T, Gilbert C, Ellis T (2014) Predicting translation initiation rates for designing synthetic biology. Front Bioeng Biotechnol 20(2):1. doi: 10.3389/fbioe201400001 Google Scholar
  123. 123.
    Renewable Fuel Standard (RFS). Available via US Environmental Protection Agency. Accessed 24 July 2014
  124. 124.
    Renninger N, McPhee D (2008) Fuel compositions including farnesane and farnesene derivatives and methods of making and using same (WO2008045555)Google Scholar
  125. 125.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440(7086):940–943. doi: 10.1038/nature04640 PubMedGoogle Scholar
  126. 126.
    Roach BT (1989) Origin and improvement of the genetic base of sugarcane. Proc Aust Soc Sugarcane Technol 11:34–47Google Scholar
  127. 127.
    Rodrigues AL et al (2013) Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein. Metab Eng 20:29–41. doi: 10.1016/j.ymben.2013.08.004 PubMedGoogle Scholar
  128. 128.
    Rodriguez HG, Popp J, Gbur E, Chaubey I (2011) Environmental and economic impacts of reducing total phosphorous runoff in an agricultural watershed. Agric Syst 104(8):623–633Google Scholar
  129. 129.
    Rogers C, Oldroyd GE (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot 65(8):1939–1946. doi: 10.1093/jxb/eru098 PubMedGoogle Scholar
  130. 130.
    Santacoloma PA, Sin G, Gernaey KV, Woodley JM (2010) Multienzyme-catalyzed processes: next-generation biocatalysis Org. Process Res Dev 15:203–212Google Scholar
  131. 131.
    Salis HM (2011) The ribosome binding site calculator. Methods Enzymol 2011(498):19–42. doi: 10.1016/B978-0-12-385120-800002-4 Google Scholar
  132. 132.
    Satoshi M (2004) Current topics in the biotechnological production of essential amino acid, functional amino acids, and dipeptides. Curr Opin Biotechnol 24:38–44. doi: 10.1016/j.copbio.201308020 Google Scholar
  133. 133.
    Shao Z, Luo Y, Zhao H (2011) Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler. Mol Biosyst 7(4):1056–1059. doi: 10.1039/c0mb00338g PubMedCentralPubMedGoogle Scholar
  134. 134.
    Schroeder J (2014) UNICA. Drought, fires hurting sugarcane harvest in Brazil. Accessed 19 Oct 2013
  135. 135.
    Schwab K (2014) Global risks (9h edn). World Economic Forum. Available via WEF. Accessed 23 Oct 2014
  136. 136.
    Shin JH, Kim HU, Kim DI, Lee SY (2013) Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol Adv 31(6):925–935. doi: 10.1016/jbiotechadv201212.008 PubMedGoogle Scholar
  137. 137.
    Sean D (2011) Petrochemical industry overview. Available via Chemical Economics Handbook—SRI Consulting. Accessed 11 July 2013
  138. 138.
    Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid derived fuels and chemicals from plant biomass. Nature 463:559–562PubMedGoogle Scholar
  139. 139.
    Stephanopoulos G, Pereira B, De MM, Sugar D, Avalos JL (2013) Engineering microbes and metabolic pathways for the production of ethylene glycol (WO 2013126721 A1). Available via Google. Accessed 29 Mar 2015
  140. 140.
    Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252(5013):1675–1681PubMedGoogle Scholar
  141. 141.
    Stevens P (2012) The ‘Shale Gas Revolution’: developments and changes. Available via: Chatham House: The Royal Institute of International Affairs.,%20Environment%20and%20Development/bp0812_stevens.pdf. Accessed 6 June 2014
  142. 142.
    Straathof AJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13(6):548–556PubMedGoogle Scholar
  143. 143.
    Sydney EB et al (2014) Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresour Technol 159:380–386. doi: 10.1016/jbiortech201402042 PubMedGoogle Scholar
  144. 144.
    Sydney EB, Larroche C, Novak AC, Nouaille R, Sarma SJ, Brar SK, Letti LA Jr, Soccol VT, Soccol CR (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88(10):3291–3294Google Scholar
  145. 145.
    Sydor T, Schaffer S, Boles E (2010) Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Appl Environ Microbiol 76(10):3361–3363. doi: 10.1128/AEM02796-09 PubMedCentralPubMedGoogle Scholar
  146. 146.
    Tawasha MA (1999) Eastman, Genencor to market new process. Available via ICIS. Accessed 25 Oct 2014
  147. 147.
    United States Environmental Protection Agency (2010) Greener Reaction Conditions Award. Available via US EPA. Accessed 06 Nov 2014
  148. 148.
  149. 149.
    Valdehuesa KNG, Liu H, Ramos KRM, Park SJ, NisolaGM Lee WK, Chung WJ (2014) Direct bioconversion of d-xylose to 1,2,4-butanetriol in an engineered Escherichia coli. Process Biochem 49(1):25–32. doi: 10.1016/jprocbio201310002 Google Scholar
  150. 150.
    Velasco J (2014) Amyris biorefinery successfully restarts industrial production in Brazil. Available via Amyris Press Release. Accessed 16 Oct 2014
  151. 151.
    Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8(3):263–276. doi: 10.1111/j1467-7652.2009.00491.x PubMedGoogle Scholar
  152. 152.
    Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, Church GM (2009) Programming cells by multiplex genome engineering and accelerate devolution. Nature 460(7257):894–898. doi: 10.1038/nature08187 PubMedGoogle Scholar
  153. 153.
    Westfall PJ, Gardner TS (2011) Industrial fermentation of renewable diesel fuels. Curr Opin Biotechnol 3:344–350. doi: 10.1016/jcopbio201104023 Google Scholar
  154. 154.
    Weyler W, Dodge TC, Lauff JJ, Wendt DJ (2001) Microbial production of indigo. Genencor Int (US 6303354). Available via Free Patents Online. Accessed 29 Mar 2015
  155. 155.
    Wierckx NJ, Ballerstedt H, de Bont JA, Wery J (2005) Engineering of solvent-tolerant Pseudomonas putida S12 for bioproduction of phenol from glucose. Appl Environ Microbiol 71(12):8221–8227PubMedCentralPubMedGoogle Scholar
  156. 156.
    Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2010) Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6(3):152–163. doi: 10.1089/ind.20106152 Google Scholar
  157. 157.
    Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73(5):980–990PubMedGoogle Scholar
  158. 158.
    Wu J, Du G, Zhou J, Chen J (2013) Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng 16:48–55. doi: 10.1016/jymben.201211009 PubMedGoogle Scholar
  159. 159.
    Xiaodong D, McPhail LL (2012) Inside the Black Box: the price linkage and transmission between energy and agricultural markets. Energy J 33(2):171–194Google Scholar
  160. 160.
    Yao YF, Wang CS, Qiao J, Zhao GR (2013) Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway. Metab Eng 19:79–87. doi: 10.1016/j.ymben.2013.06.001 PubMedGoogle Scholar
  161. 161.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S(2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7(7):445–452. doi: 10.1038/nchembio580 PubMedGoogle Scholar
  162. 162.
    Yu JL, Xia XX, Zhong JJ, Qian ZG (2014) Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol Bioeng 111(12):2580–2586. doi: 10.1002/bit.25293
  163. 163.
    Zahiri HS, Yoon SH, Keasling JD, Lee SH, Kim SW, Yoon SC, Shin YC (2006) Coenzyme Q10 production in recombinant Escherichia coli strains engineered with a heterologous decaprenyl diphosphate synthase gene and foreign mevalonate pathway. Metab Eng 8:406–416PubMedGoogle Scholar
  164. 164.
    Zahoor A, Otten A, Wendisch VF (2014) Metabolic engineering of Corynebacterium glutamicum for glycolate production. J Biotechnol 192 Pt B:366–375. doi: 10.1016/jjbiotec201312020 [(14)00039-X]PubMedGoogle Scholar
  165. 165.
    Zhang Z, Jantama K, Moore JC, Jarboe LR, Shanmugam KT, Ingram LO (2009) Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proc Natl Acad Sci USA 106(48):20180–20185. doi: 10.1073/pnas.0905396106 PubMedCentralPubMedGoogle Scholar
  166. 166.
    Zhang C, Liu L, Teng L, Chen J, Liu J, Li J, Du G, Chen J (2012) Metabolic engineering of Escherichia coli BL21 for biosynthesis of heparosan, a bioengineered heparin precursor. Metab Eng 14(5):521–527. doi: 10.1016/j.ymben201206005 PubMedGoogle Scholar
  167. 167.
    Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156:287–301. doi: 10.1099/mic0034793-0 PubMedGoogle Scholar
  168. 168.
    Zhang W, Li Y, Tang Y (2008) Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc Natl Acad Sci USA 105:20683. doi: 10.1073/pnas0809084105 PubMedCentralPubMedGoogle Scholar
  169. 169.
    Zhang YHP (2014) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv 27 (in press). doi: 10.1016/j.biotechadv.2014.10.009
  170. 170.
    Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y (2013) Engineering central metabolic modules of Escherichia coli for improving β-carotene production. Metab Eng 17:42–50. doi: 10.1016/jymben.2013.02.002 PubMedGoogle Scholar
  171. 171.
    Zheng Y, Liu Q, Li L, Qin W, Yang J, Zhang H, Jiang X, Cheng T, Liu W, Xu X, Xian M (2013) Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnol Biofuels 6:57. doi: 10.1186/1754-6834-6-57 PubMedCentralPubMedGoogle Scholar
  172. 172.
    Zhuang ZY, Li SY (2013) Rubisco-based engineered Escherichia coli for in situ carbon dioxide recycling. Bioresour Technol 150:79–88. doi: 10.1016/j.biortech.2013.09.116 PubMedGoogle Scholar
  173. 173.
    Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture—status and perspectives. J Plant Physiol 171(9):656–669PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  1. 1.Braskem, Innovation in Renewable TechnologiesSao PauloBrazil

Personalised recommendations