Advertisement

Methods and advances in metabolic flux analysis: a mini-review

  • Maciek R. Antoniewicz
Systems Biotechnology

Abstract

Metabolic flux analysis (MFA) is one of the pillars of metabolic engineering. Over the past three decades, it has been widely used to quantify intracellular metabolic fluxes in both native (wild type) and engineered biological systems. Through MFA, changes in metabolic pathway fluxes are quantified that result from genetic and/or environmental interventions. This information, in turn, provides insights into the regulation of metabolic pathways and may suggest new targets for further metabolic engineering of the strains. In this mini-review, we discuss and classify the various methods of MFA that have been developed, which include stoichiometric MFA, 13C metabolic flux analysis, isotopic non-stationary 13C metabolic flux analysis, dynamic metabolic flux analysis, and 13C dynamic metabolic flux analysis. For each method, we discuss key advantages and limitations and conclude by highlighting important recent advances in flux analysis approaches.

Keywords

Metabolism Isotopic labeling Metabolic network model Flux quantification 

Abbreviations

MFA

Metabolic flux analysis

DMFA

Dynamic metabolic flux analysis

13C-MFA

13C-metabolic flux analysis

13C-DMFA

13C dynamic metabolic flux analysis

13C-NMFA

Isotopic non-stationary 13C-metabolic flux analysis

SSR

Variance-weighted sum of squared residuals

Notes

Acknowledgments

This work was supported by NSF MCB-1120684 grant.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Adebiyi AO, Jazmin LJ, Young JD (2014) 13C flux analysis of cyanobacterial metabolism. Photosynth ResGoogle Scholar
  2. 2.
    Ahn WS, Antoniewicz MR (2011) Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. Metab Eng 13(5):598–609PubMedCrossRefGoogle Scholar
  3. 3.
    Ahn WS, Antoniewicz MR (2012) Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol J 7(1):61–74PubMedCrossRefGoogle Scholar
  4. 4.
    Ahn WS, Antoniewicz MR (2013) Parallel labeling experiments with [1,2-(13)C]glucose and [U-(13)C]glutamine provide new insights into CHO cell metabolism. Metab Eng 15:34–47PubMedCrossRefGoogle Scholar
  5. 5.
    Antoniewicz MR (2013) 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 24(6):1116–1121PubMedCrossRefGoogle Scholar
  6. 6.
    Antoniewicz MR (2013) Dynamic metabolic flux analysis—tools for probing transient states of metabolic networks. Curr Opin Biotechnol 24(6):973–978PubMedCrossRefGoogle Scholar
  7. 7.
    Antoniewicz MR (2013) Tandem mass spectrometry for measuring stable-isotope labeling. Curr Opin Biotechnol 24(1):48–53PubMedCrossRefGoogle Scholar
  8. 8.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2006) Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. Metab Eng 8(4):324–337PubMedCrossRefGoogle Scholar
  9. 9.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Accurate assessment of amino acid mass isotopomer distributions for metabolic flux analysis. Anal Chem 79(19):7554–7559PubMedCrossRefGoogle Scholar
  10. 10.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2007) Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. Metab Eng 9(1):68–86PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Antoniewicz MR, Kelleher JK, Stephanopoulos G (2011) Measuring deuterium enrichment of glucose hydrogen atoms by gas chromatography/mass spectrometry. Anal Chem 83(8):3211–3216PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Antoniewicz MR, Kraynie DF, Laffend LA, Gonzalez-Lergier J, Kelleher JK, Stephanopoulos G (2007) Metabolic flux analysis in a nonstationary system: fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol. Metab Eng 9(3):277–292PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Au J, Choi J, Jones SW, Venkataramanan KP, Antoniewicz MR (2014) Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for C metabolic flux analysis. Metab Eng 26:23–33CrossRefGoogle Scholar
  14. 14.
    Beste DJV, Bonde B, Hawkins N, Ward JL, Beale MH, Noack S, Nöh K, Kruger NJ, Ratcliffe RG, McFadden J (2011) 13C Metabolic flux Analysis identifies an unusual route for pyruvate dissimilation in Mycobacteria which requires isocitrate lyase and carbon dioxide fixation. PLoS Pathog 7(7):e1002091–e1002091PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Bonarius HP, Hatzimanikatis V, Meesters KP, de Gooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 50(3):299–318PubMedCrossRefGoogle Scholar
  16. 16.
    Bonarius HP, Timmerarends B, de Gooijer CD, Tramper J (1998) Metabolite-balancing techniques vs. 13C tracer experiments to determine metabolic fluxes in hybridoma cells. Biotechnol Bioeng 58(2–3):258–262PubMedCrossRefGoogle Scholar
  17. 17.
    Choi J, Antoniewicz MR (2011) Tandem mass spectrometry: a novel approach for metabolic flux analysis. Metab Eng 13(2):225–233PubMedCrossRefGoogle Scholar
  18. 18.
    Choi J, Grossbach MT, Antoniewicz MR (2012) Measuring complete isotopomer distribution of aspartate using gas chromatography/tandem mass spectrometry. Anal Chem 84(10):4628–4632PubMedCrossRefGoogle Scholar
  19. 19.
    Christensen B, Nielsen J (2000) Metabolic network analysis of Penicillium chrysogenum using (13)C-labeled glucose. Biotechnol Bioeng 68(6):652–659PubMedCrossRefGoogle Scholar
  20. 20.
    Crown SB, Ahn WS, Antoniewicz MR (2012) Rational design of (13)C-labeling experiments for metabolic flux analysis in mammalian cells. BMC Syst Biol 6:43PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Crown SB, Antoniewicz MR (2012) Selection of tracers for 13C-metabolic flux analysis using elementary metabolite units (EMU) basis vector methodology. Metab Eng 14(2):150–161PubMedCrossRefGoogle Scholar
  22. 22.
    Crown SB, Antoniewicz MR (2013) Parallel labeling experiments and metabolic flux analysis: past, present and future methodologies. Metab Eng 16:21–32PubMedCrossRefGoogle Scholar
  23. 23.
    Crown SB, Antoniewicz MR (2013) Publishing 13C metabolic flux analysis studies: a review and future perspectives. Metab Eng 20:42–48PubMedCrossRefGoogle Scholar
  24. 24.
    Crown SB, Antoniewicz MR (2015) Integrated 13C-metabolic flux analysis of 14 parallel labeling experiments in Escherichia coli. Metab Eng. doi: 10.1016/j.ymben.2015.01.001
  25. 25.
    Crown SB, Indurthi DC, Ahn WS, Choi J, Papoutsakis ET, Antoniewicz MR (2011) Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: isotopomer analysis, in vitro activities and expression analysis. Biotechnol J 6(3):300–305PubMedCrossRefGoogle Scholar
  26. 26.
    Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16(4):642–649PubMedCrossRefGoogle Scholar
  27. 27.
    Feist AM, Palsson BO (2010) The biomass objective function. Curr Opin Microbiol 13(3):344–349PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewicz MR, Tang YJ, Peng L (2014) Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnol Bioeng 111(3):575–585PubMedCrossRefGoogle Scholar
  29. 29.
    Hiller K, Metallo CM (2013) Profiling metabolic networks to study cancer metabolism. Curr Opin Biotechnol 24(1):60–68PubMedCrossRefGoogle Scholar
  30. 30.
    Hofmann U, Maier K, Nicbel A, Vacun G, Reuss M, Mauch K (2008) Identification of metabolic fluxes in hepatic cells from transient C-13-labeling experiments: part I. Experimental observations. Biotechnol Bioeng 100(2):344–354PubMedCrossRefGoogle Scholar
  31. 31.
    Jeffrey FMH, Roach JS, Storey CJ, Sherry AD, Malloy CR (2002) C-13 isotopomer analysis of glutamate by tandem mass spectrometry. Anal Biochem 300(2):192–205PubMedCrossRefGoogle Scholar
  32. 32.
    Junker BH (2014) Flux analysis in plant metabolic networks: increasing throughput and coverage. Curr Opin Biotechnol 26:183–188PubMedCrossRefGoogle Scholar
  33. 33.
    Kelleher JK, Masterson TM (1992) Model equations for condensation biosynthesis using stable isotopes and radioisotopes. The Am J Physiol 262(1 Pt 1):E118–E125Google Scholar
  34. 34.
    Kiefer P, Nicolas C, Letisse F, Portais J-C (2007) Determination of carbon labeling distribution of intracellular metabolites from single fragment ions by ion chromatography tandem mass spectrometry. Anal Biochem 360(2):182–188PubMedCrossRefGoogle Scholar
  35. 35.
    Klapa MI, Aon J-C, Stephanopoulos G (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur J Biochem/FEBS 270(17):3525–3542CrossRefGoogle Scholar
  36. 36.
    Kohlstedt M, Becker J, Wittmann C (2010) Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism. Appl Microbiol Biotechnol 88(5):1065–1075PubMedCrossRefGoogle Scholar
  37. 37.
    Kruger NJ, Masakapalli SK, Ratcliffe RG (2012) Strategies for investigating the plant metabolic network with steady-state metabolic flux analysis: lessons from an Arabidopsis cell culture and other systems. J Exp Bot 63(6):2309–2323PubMedCrossRefGoogle Scholar
  38. 38.
    Leighty RW, Antoniewicz MR (2011) Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. Metab Eng 13(6):745–755PubMedCrossRefGoogle Scholar
  39. 39.
    Leighty RW, Antoniewicz MR (2012) Parallel labeling experiments with [U-13C]glucose validate E. coli metabolic network model for 13C metabolic flux analysis. Metab Eng 14(5):533–541PubMedCrossRefGoogle Scholar
  40. 40.
    Leighty RW, Antoniewicz MR (2013) COMPLETE-MFA: complementary parallel labeling experiments technique for metabolic flux analysis. Metab Eng 20:49–55PubMedCrossRefGoogle Scholar
  41. 41.
    Lequeux G, Beauprez J, Maertens J, Van Horen E, Soetaert W, Vandamme E, Vanrolleghem PA (2010) Dynamic metabolic flux analysis demonstrated on cultures where the limiting substrate is changed from carbon to nitrogen and vice versa. J Biomed Biotechnol 2010Google Scholar
  42. 42.
    Lewis CA, Parker SJ, Fiske BP, McCloskey D, Gui DY, Green CR, Vokes NI, Feist AM, Vander Heiden MG, Metallo CM (2014) Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell 55(2):253–263PubMedCrossRefGoogle Scholar
  43. 43.
    Llaneras F, Picó J (2007) A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient. BMC Bioinform 8:421CrossRefGoogle Scholar
  44. 44.
    Long CP, Antoniewicz MR (2014) Metabolic flux analysis of Escherichia coli knockouts: lessons from the Keio collection and future outlook. Curr Opin Biotechnol 28:127–133PubMedCrossRefGoogle Scholar
  45. 45.
    Long CP, Antoniewicz MR (2014) Quantifying biomass composition by gas chromatography/mass spectrometry. Anal Chem 86(19):9423–9427PubMedCrossRefGoogle Scholar
  46. 46.
    Ma F, Jazmin LJ, Young JD, Allen DK (2014) Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation. Proc Natl Acad Sci USA 111(47):16967–16972PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Maier K, Hofmann U, Reuss M, Mauch K (2008) Identification of metabolic fluxes in hepatic cells from transient C-13-labeling experiments: part II. Flux estimation. Biotechnol Bioeng 100(2):355–370PubMedCrossRefGoogle Scholar
  48. 48.
    Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1(1):35–48PubMedCrossRefGoogle Scholar
  49. 49.
    Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G (2009) Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 106(16):6477–6482PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Mueller D, Heinzle E (2013) Stable isotope-assisted metabolomics to detect metabolic flux changes in mammalian cell cultures. Curr Opin Biotechnol 24(1):54–59PubMedCrossRefGoogle Scholar
  51. 51.
    Murphy TA, Dang CV, Young JD (2013) Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. Metab Eng 15:206–217PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Murphy TA, Young JD (2013) ETA: robust software for determination of cell specific rates from extracellular time courses. Biotechnol Bioeng 110(6):1748–1758PubMedCrossRefGoogle Scholar
  53. 53.
    Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H (2014) Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant Cell Physiol 55(9):1605–1612PubMedCrossRefGoogle Scholar
  54. 54.
    Nargund S, Misra A, Zhang X, Coleman GD, Sriram G (2014) Flux and reflux: metabolite reflux in plant suspension cells and its implications for isotope-assisted metabolic flux analysis. Mol Biosyst 10(6):1496–1508PubMedCrossRefGoogle Scholar
  55. 55.
    Niklas J, Schneider K, Heinzle E (2010) Metabolic flux analysis in eukaryotes. Curr Opin Biotechnol 21(1):63–69PubMedCrossRefGoogle Scholar
  56. 56.
    Niklas J, Schräder E, Sandig V, Noll T, Heinzle E (2011) Quantitative characterization of metabolism and metabolic shifts during growth of the new human cell line AGE1.HN using time resolved metabolic flux analysis. Bioprocess Biosyst Eng 34(5):533–545PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Noack S, Noh K, Moch M, Oldiges M, Wiechert W (2011) Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset. J Biotechnol 154(2–3):179–190PubMedCrossRefGoogle Scholar
  58. 58.
    Noh K, Wahl A, Wiechert W (2006) Computational tools for isotopically instationary 13C labeling experiments under metabolic steady state conditions. Metab Eng 8(6):554–577PubMedCrossRefGoogle Scholar
  59. 59.
    Nyberg GB, Balcarcel RR, Follstad BD, Stephanopoulos G, Wang DIC (1999) Metabolism of peptide amino acids by Chinese hamster ovary cells grown in a complex medium. Biotechnol Bioeng 62(3):324–335PubMedCrossRefGoogle Scholar
  60. 60.
    Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Provost A, Bastin G (2004) Dynamic metabolic modelling under the balanced growth condition. J Process Control 14(7):717–728CrossRefGoogle Scholar
  62. 62.
    Quek L-E, Wittmann C, Nielsen L, Kromer J (2009) OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. Microb Cell Fact 8(1):25PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Quek LE, Dietmair S, Kromer JO, Nielsen LK (2010) Metabolic flux analysis in mammalian cell culture. Metab Eng 12(2):161–171PubMedCrossRefGoogle Scholar
  64. 64.
    Schmidt K, Carlsen M, Nielsen J, Villadsen J (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol Bioeng 55(6):831–840PubMedCrossRefGoogle Scholar
  65. 65.
    Schmidt K, Marx A, de Graaf AA, Wiechert W, Sahm H, Nielsen J, Villadsen J (1998) 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches. Biotechnol Bioeng 58(2–3):254–257PubMedCrossRefGoogle Scholar
  66. 66.
    Sengupta N, Rose ST, Morgan JA (2011) Metabolic flux analysis of CHO cell metabolism in the late non-growth phase. Biotechnol Bioeng 108(1):82–92PubMedCrossRefGoogle Scholar
  67. 67.
    Shachar-Hill Y (2013) Metabolic network flux analysis for engineering plant systems. Curr Opin Biotechnol 24(2):247–255PubMedCrossRefGoogle Scholar
  68. 68.
    Sriram G, Fulton DB, Iyer VV, Peterson JM, Zhou R, Westgate ME, Spalding MH, Shanks JV (2004) Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional (13)C labeling, two-dimensional [(13)C, (1)H] nuclear magnetic resonance, and comprehensive isotopomer balancing. Plant Physiol 136(2):3043–3057PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Sriram G, Fulton DB, Shanks JV (2007) Flux quantification in central carbon metabolism of Catharanthus roseus hairy roots by 13C labeling and comprehensive bondomer balancing. Phytochemistry 68(16–18):2243–2257PubMedCrossRefGoogle Scholar
  70. 70.
    Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1(1):1–11PubMedCrossRefGoogle Scholar
  71. 71.
    Swarup A, Lu J, DeWoody KC, Antoniewicz MR (2014) Metabolic network reconstruction, growth characterization and 13C-metabolic flux analysis of the extremophile Thermus thermophilus HB8. Metab Eng 24:173–180PubMedCrossRefGoogle Scholar
  72. 72.
    Szyperski T (1995) Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur J Biochem/FEBS. 232(2):433–448CrossRefGoogle Scholar
  73. 73.
    Tang YJ, Martin HG, Myers S, Rodriguez S, Baidoo EE, Keasling JD (2009) Advances in analysis of microbial metabolic fluxes via (13)C isotopic labeling. Mass Spectrom Rev 28(2):362–375PubMedCrossRefGoogle Scholar
  74. 74.
    Tang YJ, Sapra R, Joyner D, Hazen TC, Myers S, Reichmuth D, Blanch H, Keasling JD (2009) Analysis of metabolic pathways and fluxes in a newly discovered thermophilic and ethanol-tolerant Geobacillus strain. Biotechnol Bioeng 102(5):1377–1386PubMedCrossRefGoogle Scholar
  75. 75.
    Toya Y, Shimizu H (2013) Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol Adv 31(6):818–826PubMedCrossRefGoogle Scholar
  76. 76.
    van Winden WA, Heijnen JJ, Verheijen PJT (2002) Cumulative bondomers: a new concept in flux analysis from 2D [13C,1H] COSY NMR data. Biotechnol Bioeng 80(7):731–745PubMedCrossRefGoogle Scholar
  77. 77.
    vanGulik WM, Antoniewicz MR, deLaat WT, Vinke JL, Heijnen JJ (2001) Energetics of growth and penicillin production in a high-producing strain of Penicillium chrysogenum. Biotechnol Bioeng 72(2):185–193PubMedCrossRefGoogle Scholar
  78. 78.
    Varman AM, He L, You L, Hollinshead W, Tang YJ (2014) Elucidation of intrinsic biosynthesis yields using 13C-based metabolism analysis. Microb Cell Fact 13(1):42PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Wahrheit J, Nicolae A, Heinzle E (2011) Eukaryotic metabolism: measuring compartment fluxes. Biotechnol J 6(9):1071–1085PubMedCrossRefGoogle Scholar
  80. 80.
    Walther JL, Metallo CM, Zhang J, Stephanopoulos G (2012) Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Metab Eng 14(2):162–171PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Weitzel M, Noh K, Dalman T, Niedenfuhr S, Stute B, Wiechert W (2013) 13CFLUX2—high-performance software suite for 13C-metabolic flux analysis. Bioinformatics 29(1):143–145PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Wiechert W (2001) C-13 metabolic flux analysis. Metab Eng 3(3):195–206PubMedCrossRefGoogle Scholar
  83. 83.
    Wiechert W, Mollney M, Isermann N, Wurzel W, de Graaf AA (1999) Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnol Bioeng 66(2):69–85PubMedCrossRefGoogle Scholar
  84. 84.
    Wiechert W, Noh K (2013) Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 24(6):979–986PubMedCrossRefGoogle Scholar
  85. 85.
    Wiechert W, Nöh K (2005) From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 92:145–172PubMedGoogle Scholar
  86. 86.
    Yang J, Wongsa S, Kadirkamanathan V, Billings SA, Wright PC (2005) Metabolic flux distribution analysis by 13C-tracer experiments using the Markov chain-Monte Carlo method. Biochem Soc Trans 33(Pt 6):1421–1422PubMedGoogle Scholar
  87. 87.
    Yoo H, Antoniewicz MR, Stephanopoulos G, Kelleher JK (2008) Quantifying reductive carboxylation flux of glutamine to lipid in a brown adipocyte cell line. J Biol Chem 283(30):20621–20627PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    You L, Berla B, He L, Pakrasi HB, Tang YJ (2014) 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnol J 9(5):684–692PubMedCrossRefGoogle Scholar
  89. 89.
    Young JD (2013) Metabolic flux rewiring in mammalian cell cultures. Curr Opin Biotechnol 24(6):1108–1115PubMedCrossRefGoogle Scholar
  90. 90.
    Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30(9):1333–1335PubMedCrossRefGoogle Scholar
  91. 91.
    Young JD, Shastri AA, Stephanopoulos G, Morgan JA (2011) Mapping photoautotrophic metabolism with isotopically nonstationary (13)C flux analysis. Metab Eng 13(6):656–665PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Young JD, Walther JL, Antoniewicz MR, Yoo H, Stephanopoulos G (2008) An elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis. Biotechnol Bioeng 99(3):686–699PubMedCrossRefGoogle Scholar
  93. 93.
    Zamboni N (2010) 13C metabolic flux analysis in complex systems. Curr Opin Biotechnol 22(1):103–108PubMedCrossRefGoogle Scholar
  94. 94.
    Zhang Z, Shen T, Rui B, Zhou W, Zhou X, Shang C, Xin C, Liu X, Li G, Jiang J, Li C, Li R, Han M, You S, Yu G, Yi Y, Wen H, Liu Z, Xie X (2014) CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics. Nucleic Acids ResGoogle Scholar
  95. 95.
    Zupke C, Stephanopoulos G (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol Prog 10(5):489–498CrossRefGoogle Scholar
  96. 96.
    Zupke C, Stephanopoulos G (1995) Intracellular flux analysis in hybridomas using mass balances and in vitro13C nmr. Biotechnol Bioeng 45(4):292–303PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2015

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering, Metabolic Engineering and Systems Biology LaboratoryUniversity of DelawareNewarkUSA

Personalised recommendations