Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene

  • Zhiqi Qiu
  • Zujun Deng
  • Hongming Tan
  • Shining Zhou
  • Lixiang Cao
Bioenergy/Biofuels/Biochemicals

Abstract

Robust, high-yielding Saccharomyces cerevisiae is highly desirable for cost-effective cellulosic ethanol production. In this study, the bifunctional glutathione (GSH) synthetase genes GCSGS at high copy number was integrated into ribosomal DNA of S. cerevisiae by Cre–LoxP system. Threefold higher GSH contents (54.9 μmol/g dry weight) accumulated in the engineered strain BY-G compared to the reference strain. Tolerance of BY-G to H2O2 (3 mM), temperature (40 °C), furfural (10 mM), hydroxymethylfurfural (HMF, 10 mM) and 0.5 mM Cd2+ increased compared to reference strain. Twofold higher ethanol concentration was obtained by BY-G in simultaneous saccharification and fermentation of corn stover compared to the reference strain. The results showed that intracellular GSH content of S. cerevisiae has an influence on robustness. The strategy is used to engineer S. cerevisiae strains adaptive to a combination of tolerance to inhibitors and raised temperature that may occur in high solid simultaneous saccharification and fermentation of lignocellulosic feedstocks.

Keywords

Bioethanol GSH Lignocellulose S. cerevisiae Robustness 

References

  1. 1.
    Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349CrossRefGoogle Scholar
  2. 2.
    Ask M, Mapelli V, Höck H, Olsson L, Bettiga M (2013) Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 12:87CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Fischer CR, Klein-Marcuschamer D, Stephanopoulos G (2008) Selection and optimization of microbial hosts for biofuels production. Metab Eng 10:295–304CrossRefPubMedGoogle Scholar
  4. 4.
    Fonseca BG, Puentes JG, Mateo S, Sánchez S, Moya AJ, Roberto IC (2013) Detoxification of rice straw and olive tree pruning hemicellulosic hydrolysates employing Saccharomyces cerevisiae and its effect on the ethanol production by Pichia stipitis. J Agri Food Chem. doi:10.1021/jf402474s Google Scholar
  5. 5.
    Grabek-Lejko D, Kurylenko OO, Sibirny VA, Ubiyvovk VM, Penninckx M, Sibirny AA (2011) Alcoholic fermentation by wild type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione. J Ind Microbiol Biotechnol 38:1853–1859CrossRefPubMedGoogle Scholar
  6. 6.
    Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242CrossRefPubMedGoogle Scholar
  7. 7.
    Liedschulte V, Wachter A, An Z, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820CrossRefPubMedGoogle Scholar
  8. 8.
    Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352CrossRefPubMedGoogle Scholar
  9. 9.
    Liu ZL, Moon J, Andersh B, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753CrossRefPubMedGoogle Scholar
  10. 10.
    Ma M, Wang X, Zhang X, Zhao X (2013) Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Appl Microbiol Biotechnol 97:8411–8425CrossRefPubMedGoogle Scholar
  11. 11.
    van Maris AJA, Abbott DA, Bellissimi E, Brink J, Kuyper M, Luttik AH, Wisselink HW, Scheffers WA, Dijken J, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Anton Leeuw 90:391–418CrossRefGoogle Scholar
  12. 12.
    Masella R, Benedetto RD, Vari R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586CrossRefPubMedGoogle Scholar
  13. 13.
    Nogué VS, Narayanan V, Gorwa-Grauslund MF (2013) Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH. Appl Microbiol Biotechnol 97:7517–7525CrossRefGoogle Scholar
  14. 14.
    Owens CWI, Belcher RV (1965) A colorimetric micro-method for the determination of glutathione. Biochem J 94:705–711PubMedCentralPubMedGoogle Scholar
  15. 15.
    Penninckx M (2000) A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enz Microb Technol 26:737–742CrossRefGoogle Scholar
  16. 16.
    Wallace-Salinas V, Gorwa-Grauslund MF (2013) Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnol Biofuels 6:151CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Wen S, Zhang T, Tan T (2004) Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enz Microb Technol 35:501–507CrossRefGoogle Scholar
  18. 18.
    Zhang J, Zhu Z, Wang X, Wang N, Wang W, Bao J (2010) Biodetoxification of toxins generated from lignocellulose pretreated using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels 3:26CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Zhang G, French WT, Hernandez R, Alley E, Paraschivescu M (2011) Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass Bioenerg 35:734–740CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • Zhiqi Qiu
    • 1
  • Zujun Deng
    • 2
  • Hongming Tan
    • 1
  • Shining Zhou
    • 1
  • Lixiang Cao
    • 1
  1. 1.School of Life SciencesSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic CoursesGuangdong Pharmaceutical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations