An integrated biotechnology platform for developing sustainable chemical processes

  • Nelson R. Barton
  • Anthony P. Burgard
  • Mark J. Burk
  • Jason S. Crater
  • Robin E. Osterhout
  • Priti Pharkya
  • Brian A. Steer
  • Jun Sun
  • John D. Trawick
  • Stephen J. Van Dien
  • Tae Hoon Yang
  • Harry Yim
Metabolic Engineering and Synthetic Biology

Abstract

Genomatica has established an integrated computational/experimental metabolic engineering platform to design, create, and optimize novel high performance organisms and bioprocesses. Here we present our platform and its use to develop E. coli strains for production of the industrial chemical 1,4-butanediol (BDO) from sugars. A series of examples are given to demonstrate how a rational approach to strain engineering, including carefully designed diagnostic experiments, provided critical insights about pathway bottlenecks, byproducts, expression balancing, and commercial robustness, leading to a superior BDO production strain and process.

Keywords

1,4-butanediol Metabolic engineering Modeling Fermentation 

References

  1. 1.
    Banner T, Fosmer A, Jessen HJ, Marasco E, Rush B, Veldhouse J, de Souza M (2011) Microbial bioprocesses for industrial-scale chemical production. In: Tao J, Kazlauskas R (eds) Biocatalysis for green chemistry and chemical process development. Wiley, HobokenGoogle Scholar
  2. 2.
    Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5(8):593–599PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Boyd D, Weiss DS, Chen JC, Beckwith J (2000) Towards single-copy gene expression systems making gene cloning physiologically relevant: Lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J Bacteriol 182(3):842–847PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Carlier A, Chevrot R, Dessaux Y, Faure D (2004) The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. Mol Plant Microbe Interact 17(9):951–957PubMedCrossRefGoogle Scholar
  5. 5.
    Ciolino LA, Mesmer MZ, Satzger RD, Machal AC, McCauley HA, Mohrhaus AS (2001) The chemical interconversion of GHB and GBL: forensic issues and implications. J Forensic Sci 46(6):1315–1323PubMedGoogle Scholar
  6. 6.
    Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J7:176–185Google Scholar
  7. 7.
    Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Goh S, Good L (2008) Plasmid selection in Escherichia coli using an endogenous essential gene marker. BMC Biotechnol 8:61PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Hillson NJ, Rosengarten RD, Keasling JD (2012) j5 DNA assembly design automation software. ACS Synth Biol 1:14–21PubMedCrossRefGoogle Scholar
  10. 10.
    Hwang HJ, Park JH, Kim JH, Kong MK, Kim JW, Park JW, Cho KM, Lee PC (2014) Engineering of a butyraldehyde dehydrogenase of Clostridium saccharoperbutylacetonicum to fit an engineered 1,4-butanediol pathway in Escherichia coli. Biotechnol Bioeng 111(7):1374–1384PubMedCrossRefGoogle Scholar
  11. 11.
    Iuchi S, Lin EC (1988) arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA 85:1888–1892PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Kim Y, Ingram LO, Shanmugam KT (2008) Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. J Bacteriol 190:3851–3858PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14:454–459PubMedCrossRefGoogle Scholar
  14. 14.
    Picotti P, Aebersold R (2012) Selected reaction monitoring–based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555–566PubMedCrossRefGoogle Scholar
  15. 15.
    Risso C, Van Dien SJ, Orloff A, Lovley DR (2008) Elucidation of an alternate isoleucine biosynthesis pathway in Geobactersulfurreducens. J Bacteriol 190(7):2266–2274PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27:946–950PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Silverman PM, Rother S, Gaudin H (1991) Arc and Sfr functions of the Escherichia coli K-12 arcA gene product are genetically and physiologically separable. J Bacteriol 173(18):5648–5652PubMedCentralPubMedGoogle Scholar
  18. 18.
    Van Dien S (2013) From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr Opin Biotechnol 24(6):1061–1068PubMedCrossRefGoogle Scholar
  19. 19.
    Wahl A, El Massaoudi M, Schipper D, Wiechert W, Takors R (2004) Serial 13C-based flux analysis of an l-phenylalanine-producing E. coli strain using the sensor reactor. Biotechnol Prog 20(3):706–714PubMedCrossRefGoogle Scholar
  20. 20.
    Wiese S, Reidegeld KA, Meyer HE, Warscheid B (2007) Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics 7:340–350PubMedCrossRefGoogle Scholar
  21. 21.
    Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69(1):12–50PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Yang TH, Heinzle E, Wittmann C (2005) Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling. Comput Biol Chem 29(2):121–133PubMedCrossRefGoogle Scholar
  23. 23.
    Yang TH, Wittmann C, Heinzle E (2006) Respirometric 13C flux analysis—Part II: in vivo flux estimation of lysine-producing Corynebacterium glutamicum. Metab Eng 8(5):432–446CrossRefGoogle Scholar
  24. 24.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick JD, Osterhout RE, Stephen R, Estadilla J, Teisan S, Schreyer HB, Andrae S, Yang TH, Lee SY, Burk MJ, Van Dien S (2011) Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat Chem Biol 7:445–452PubMedCrossRefGoogle Scholar
  25. 25.
    Yuan Y, Yang TH, Heinzle E (2010) 13C metabolic flux analysis for larger scale cultivation using gas chromatography-combustion-isotope ratio mass spectrometry. Metab Eng 12(4):392–400PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • Nelson R. Barton
    • 1
  • Anthony P. Burgard
    • 1
  • Mark J. Burk
    • 1
  • Jason S. Crater
    • 1
  • Robin E. Osterhout
    • 1
  • Priti Pharkya
    • 1
  • Brian A. Steer
    • 1
  • Jun Sun
    • 1
  • John D. Trawick
    • 1
  • Stephen J. Van Dien
    • 1
  • Tae Hoon Yang
    • 1
  • Harry Yim
    • 1
  1. 1.San DiegoUSA

Personalised recommendations