Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 41, Issue 11, pp 1687–1696 | Cite as

Secretome analysis of the thermophilic xylanase hyper-producer Thermomyces lanuginosus SSBP cultivated on corn cobs

  • A. M. Winger
  • J. L. Heazlewood
  • L. J. G. Chan
  • C. J. Petzold
  • K. Permaul
  • S. Singh
Genetics and Molecular Biology of Industrial Organisms

Abstract

Thermomyces lanuginosus is a thermophilic fungus known for its ability to produce industrially important enzymes including large amounts of xylanase, the key enzyme in hemicellulose hydrolysis. The secretome of T. lanuginosus SSBP was profiled by shotgun proteomics to elucidate important enzymes involved in hemicellulose saccharification and to characterise the presence of other industrially interesting enzymes. This study reproducibly identified a total of 74 proteins in the supernatant following growth on corn cobs. An analysis of proteins revealed nine glycoside hydrolase (GH) enzymes including xylanase GH11, β-xylosidase GH43, β-glucosidase GH3, α-galactosidase GH36 and trehalose hydrolase GH65. Two commercially produced Thermomyces enzymes, lipase and amylase, were also identified. In addition, other industrially relevant enzymes not currently explored in Thermomyces were identified including glutaminase, fructose-bisphosphate aldolase and cyanate hydratase. Overall, these data provide insight into the novel ability of a cellulase-free fungus to utilise lignocellulosic material, ultimately producing a number of enzymes important to various industrial processes.

Keywords

Thermomyces lanuginosus Fungal secretome Hemicellulase Lignocellulose Industrial enzymes 

Notes

Acknowledgments

The work conducted at the Durban University of Technology (DUT) was supported by grants from DUT and the National Research Foundation, Republic of South Africa. The work conducted by the Joint BioEnergy Institute was supported by the Office of Science, Office of Biological and Environmental Research, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Supplementary material

10295_2014_1509_MOESM1_ESM.docx (91 kb)
Supplementary material 1 (DOCX 91 kb)
10295_2014_1509_MOESM2_ESM.xlsx (488 kb)
Supplementary material 2 (XLSX 488 kb)
10295_2014_1509_MOESM3_ESM.xlsx (25 kb)
Supplementary material 3 (XLSX 24 kb)

References

  1. 1.
    Adav SS, Chao LT, Sk Sze (2012) Quantitative secretomic analysis of Trichodermareesei strains reveals enzymatic composition for lignocellulosic biomass degradation. Mol Cell Proteomics 11(M111):012419PubMedGoogle Scholar
  2. 2.
    Akoh CC, Lee GC, Liaw YC, Huang TH, Shaw JF (2004) GDSL family of serine esterases/lipases. Prog Lipid Res 43:534–552PubMedCrossRefGoogle Scholar
  3. 3.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedCrossRefGoogle Scholar
  4. 4.
    Baxter J, Cummings SP (2006) The current and future applications of microorganism in the bioremediation of cyanide contamination. Antonie Van Leeuwenhoek 90:1–17PubMedCrossRefGoogle Scholar
  5. 5.
    Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S (2004) Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356PubMedCrossRefGoogle Scholar
  6. 6.
    ChoiJ ParkJ, Kim D, Jung K, Kang S, Lee YH (2010) Fungal secretome database: integrated platform for annotation of fungal secretomes. BMC Genom 11:105–119CrossRefGoogle Scholar
  7. 7.
    Fernandez-Lafuente R (2010) Lipase from Thermomyceslanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212CrossRefGoogle Scholar
  8. 8.
    Foley K (1978) Physical properties, chemical properties and uses of the Anderson’s corncob products. The Andersons, MaumeeGoogle Scholar
  9. 9.
    Forney LJ, Reddy CA, Tien M, Aust SD (1982) The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaetechrysosporium. J Biol Chem 257:11455–11462PubMedGoogle Scholar
  10. 10.
    Gomes J, Purkarthofer H, Hayn M, Kapplmüller J, Sinner M, Steiner W (1993) Production of a high level of cellulase-free xylanase by the thermophilic fungus Thermomyces lanuginosus in laboratory and pilot scales using lignocellulosic materials. Appl Microbiol Biotechnol 39:700–707CrossRefGoogle Scholar
  11. 11.
    Gupta R, Gigras P, Mohapatra H, Goswami VK, Chauhan B (2003) Microbial α-amylases: a biotechnological perspective. Process Biochem 38:1599–1616CrossRefGoogle Scholar
  12. 12.
    Jensen Kenneth AJ, Ryan ZC, VandenWymelenberg A, Cullen D, Hammel KE (2002) An NADH: quinoneoxidoreductase active during biodegradation by the brown-rot basidiomycete Gloeophyllum trabeum. Appl Environ Microbiol 68:2699–2703CrossRefGoogle Scholar
  13. 13.
    Jun H, Guangye H, Daiwen C (2013) Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources. J Proteomics 89:191–201PubMedCrossRefGoogle Scholar
  14. 14.
    Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by ms/ms and database search. Anal Chem 74:5383–5392PubMedCrossRefGoogle Scholar
  15. 15.
    Kunamneni A, Permaul K, Singh S (2005) Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng 100:168–171PubMedCrossRefGoogle Scholar
  16. 16.
    Labbé G, de Groot S, Rasmusson T, Milojevic G, Dmitrienko GI, Guillemette JG (2011) Evaluation of four microbial Class II fructose 1,6-bisphosphate aldolase enzymes for use as biocatalysts. Protein Exp Purif 80:224–233CrossRefGoogle Scholar
  17. 17.
    Lin J, Ndlovu LM, Singh S, Pillay B (1999) Purification and biochemical characteristics of β-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30:73–79PubMedGoogle Scholar
  18. 18.
    Lin J, Pillay B, Singh S (1999) Purification and biochemical characteristics of β-d-glucosidase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30:81–87PubMedGoogle Scholar
  19. 19.
    Löliger J (2000) Function and importance of glutamate for savory foods. J Nutr 130:915Google Scholar
  20. 20.
    Lu X, Sun J, Nimtz M, Wissing J, Zeng AP, Rinas U (2010) The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate. Microb Cell Fact 9:23–35PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Luo W, Wang J, Liu X, Li H, Pan H, Gu Q, Yu X (2013) A facile and efficient pretreatment of corncob for bioproduction of butanol. Bioresour Technol 140:86–89PubMedCrossRefGoogle Scholar
  22. 22.
    Manavalan T, Manavalan A, Thangavelu KP, Heese K (2012) Secretome analysis of Ganoderma lucidum cultivated in sugarcane bagasse. J Proteomics 77:298–309PubMedCrossRefGoogle Scholar
  23. 23.
    McClendon SD, Batth T, Petzold CJ, Adams PD, Simmons BA, Singer SW (2012) Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnol Biofuels 5:54–62PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Mchunu NP, Permaul K, Abdul Rahman AY, Saito JA, Singh S, Alam M (2013) Xylanase superproducer: genome sequence of a compost-loving thermophilic fungus, Thermomyces lanuginosus strain SSBP. Genome Announc 1(3):e00388–e00413PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658PubMedCrossRefGoogle Scholar
  26. 26.
    Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010) CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20:1574–1584PubMedCrossRefGoogle Scholar
  27. 27.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786PubMedCrossRefGoogle Scholar
  28. 28.
    Puchart R, Vršanská M, Bhat MK, Biely P (2000) Purification and characterization of α-galactosidase from a thermophilic fungus Thermomyces lanuginosus. Biochimica Et Biophysica Acta (BBA) 1524:27–37CrossRefGoogle Scholar
  29. 29.
    Ravalason H, Grisel S, Chevret D, Favel A, Berrin JG, Sigoillot JC, Herpoël-Gimbert I (2012) Fusarium verticillioides secretome as a source of auxiliary enzymes to enhance saccharification of wheat straw. Bioresour Technol 114:589–596PubMedCrossRefGoogle Scholar
  30. 30.
    Rezessy-SzabóaJM, Nguyena QD, HoschkeaA, Braetb C, HajóscG, Claeyssens M (2007) A novel thermostable α-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b: purification and characterization. Biochimica et Biophysica Act 1770:55–62CrossRefGoogle Scholar
  31. 31.
    Ribeiro DA, Cota J, Alvarez TM, Brüchli F, Bragato J, Pereira BMP, Pauletti BA, Jackson G, Pimenta MTB, Murakami MT, Camassola M, Ruller R, Dillon AJP, Pradella JGC, PaesLeme AF, Squina FM (2012) The Penicillium echinulatum secretome on sugar cane bagasse. PLoS One 7:e50571PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Roberts J, McGregor WG (1991) Inhibition of mouse retroviral disease by bioactive glutaminase-asparaginase. J Gen Virol 72:299–305PubMedCrossRefGoogle Scholar
  33. 33.
    Royer JC, Nakas JP (1990) Simple, sensitive zymogram technique for detection of xylanase activity in polyacrylamide gels. Appl Environ Microbiol 56:1516–1517PubMedPubMedCentralGoogle Scholar
  34. 34.
    Saykhedkar S, Ray A, Ayoubi-Canaan P, Hartson SD, Prade R, Mort AJ (2012) A time course analysis of the extracellular proteome of Aspergillus nidulans growing on sorghum stover. Biotechnol Biofuels 5:52–68PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Schlacher A, Holzmann K, Hayn M, Steiner W, Schwab H (1996) Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J Biotechnol 49:211–218PubMedCrossRefGoogle Scholar
  36. 36.
    Shrivastava S, Shukla P, Deepalakshmi P, Mukhopadhyay K (2013) Characterization, cloning and functional expression of novel xylanase from Thermomyces lanuginosus SS-8 isolated from self-heating plant wreckage material. World J Microbiol Biotechnol 29:2407–2415PubMedCrossRefGoogle Scholar
  37. 37.
    Singh S, Madlala AM, Prior BA (2003) Thermomyceslanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16PubMedCrossRefGoogle Scholar
  38. 38.
    Singh S, Pillay B, Dilsook V, Prior BA (2000) Production and properties of hemicellulases by a Thermomyces lanuginosus strain. J Appl Microbiol 88:975–982PubMedCrossRefGoogle Scholar
  39. 39.
    Tapiero H, Mathé G, Couvreur P, Tew KD II (2002) Glutamine and glutamate. Biomed Pharmacother 56:446–457PubMedCrossRefGoogle Scholar
  40. 40.
    Toldra F, Aristoy MC, Flores M (2000) Contribution of muscle aminopeptidases to flavor development in dry-cured ham. Food Res Int 33:181–185CrossRefGoogle Scholar
  41. 41.
    Vuong TV, Vesterinen AH, Foumani M, Juvonen M, Seppälä J, Tenkanen M, Master ER (2013) Xylo- and cello-oligosaccharide oxidation by gluco-oligosaccharide oxidase from Sarocladium strictum and variants with reduced substrate inhibition. Biotechnol Biofuels 6:148–161PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • A. M. Winger
    • 1
  • J. L. Heazlewood
    • 2
  • L. J. G. Chan
    • 2
  • C. J. Petzold
    • 2
  • K. Permaul
    • 1
  • S. Singh
    • 1
  1. 1.Department of Biotechnology and Food TechnologyDurban University of TechnologyDurbanSouth Africa
  2. 2.Physical Biosciences Division, Joint BioEnergy InstituteLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations