Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast

  • Christoph Stöckmann
  • Thomas G. Palmen
  • Kirsten Schroer
  • Gotthard Kunze
  • Gerd Gellissen
  • Jochen BüchsEmail author
Fermentation, Cell Culture and Bioengineering


The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l−1 was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l−1. Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h−1 and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.


Arxula adeninivorans pH optimum Screening conditions Medium development 



Part of the work was carried out in a project funded by the Ministry of Economy NRW, Germany (TPW-9910v08).


  1. 1.
    Anderlei T, Büchs J (2001) Device for sterile online measurement of the oxygen transfer rate in shaking flasks. Biochem Eng J 7(2):157–162. doi: 10.1016/S1369-703x(00)00116-9 PubMedCrossRefGoogle Scholar
  2. 2.
    Anderlei T, Zang W, Papaspyrou M, Büchs J (2004) Online respiration activity measurement (OTR, CTR, RQ) in shake flasks. Biochem Eng J 17(3):187–194. doi: 10.1016/S1369-703x(03)00181-5 CrossRefGoogle Scholar
  3. 3.
    Atkinson B, Mavituna F (1983) Biochemical engineering and biotechnology handbook. Macmillan Publishers, SurreyGoogle Scholar
  4. 4.
    Beudeker RF, van Dam HW, van der Plaat JB, Vellenga K (1990) Yeast—biotechnology and biocatalysis. In: Developments in Baker′s yeast production. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Blanchard JS (1984) Buffers for enzymes. Method Enzymol 104:404–414CrossRefGoogle Scholar
  6. 6.
    Böer E, Breuer FS, Weniger M, Denter S, Piontek M, Kunze G (2011) Large-scale production of tannase using the yeast Arxula adeninivorans. Appl Microbiol Biotechnol 92(1):105–114. doi: 10.1007/s00253-011-3320-5 PubMedCrossRefGoogle Scholar
  7. 7.
    Böer E, Gellissen G, Kunze G (2005) Production of recombinant proteins—novel microbial and eukaryotic expression systems. In: Arxula adeninivorans. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Böer E, Steinborn G, Florschütz K, Körner M, Gellissen G, Kunze G (2009) Yeast biotechnology: diversity and application. In: Arxula adeninivorans (Blastobotrys adeninivorans)—a dimorphic yeast of great biotechnological potential. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. 9.
    Brown DE (1988) Physiology of industrial fungi. In: The submerged culture of filamentous fungi. Blackwell Scientific Publications, OxfordGoogle Scholar
  10. 10.
    Büchs J, Maier U, Lotter S, Peter CP (2007) Calculating liquid distribution in shake flasks on rotary shakers at waterlike viscosities. Biochem Eng J 34(3):200–208. doi: 10.1016/j.bej.2006.12.005 CrossRefGoogle Scholar
  11. 11.
    Dedyukhina EG, Eroshin VK (1991) Essential metal-ions in the control of microbial metabolism. Process Biochem 26(1):31–37. doi: 10.1016/0032-9592(91)80005-A CrossRefGoogle Scholar
  12. 12.
    Degelmann A (2002) Hansenula polymorpha-biology and applications. Methods. Wiley-VCH, WeinheimGoogle Scholar
  13. 13.
    Denison SH (2000) pH regulation of gene expression in fungi. Fungal Genet Biol 29(2):61–71. doi: 10.1006/fgbi.2000.1188 PubMedCrossRefGoogle Scholar
  14. 14.
    Duboc P, Schill N, Menoud L, Vangulik W, Vonstockar U (1995) Measurements of sulfur, phosphorus and other ions in microbial biomass-influence on correct determination of elemental composition and degree of reduction. J Biotechnol 43(2):145–158. doi: 10.1016/0168-1656(95)00135-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Ferrer-Miralles N, Domingo-Espin J, Corchero JL, Vazquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8. doi: 10.1186/1475-2859-8-17
  16. 16.
    Flikweert MT, Kuyper M, van Maris AJA, Kotter P, van Dijken JP, Pronk JT (1999) Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66(1):42–50. doi: 10.1002/(Sici)1097-0290(1999)66:1<42:Aid-Bit4>3.0.Co;2-L PubMedCrossRefGoogle Scholar
  17. 17.
    Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica-a comparison. FEMS Yeast Res 5(11):1079–1096. doi: 10.1016/j.femsyr.2005.06.004 PubMedCrossRefGoogle Scholar
  18. 18.
    Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22(11):1409–1414. doi: 10.1038/Nbt1028 PubMedCrossRefGoogle Scholar
  19. 19.
    Gienow U, Kunze G, Schauer F, Bode R, Hofemeister J (1990) The yeast genus Trichosporon spec. LS3-molecular characterization of genomic complexity. Zbl Mikrobiol 145(1):3–12Google Scholar
  20. 20.
    Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh RMM (1966) Hydrogen ion buffers for biological research. Biochemistry 5(2):467–477. doi: 10.1021/Bi00866a011 PubMedCrossRefGoogle Scholar
  21. 21.
    Greasham RL (1993) Bioprocessing. In: Media for microbial fermentation. Wiley-VCH, WeinheimGoogle Scholar
  22. 22.
    Guez JS, Müller CH, Danze PM, Büchs J, Jacques P (2008) Respiration activity monitoring system (RAMOS), an efficient tool to study the influence of the oxygen transfer rate on the synthesis of lipopeptide by Bacillus subtilis ATCC6633. J Biotechnol 134(1–2):121–126. doi: 10.1016/j.jbiotec.2008.01.003 PubMedCrossRefGoogle Scholar
  23. 23.
    Hellwig S, Stöckmann C, Gellissen G, Büchs J (2005) Production of recombinant proteins-novel microbial and eukaryotic expression systems. In: Comparative fermentation. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Jones RP, Greenfield PF (1984) A review of yeast ionic nutrition. I. Growth and fermentation requirements. Process Biochem 19(2):48–60Google Scholar
  25. 25.
    Kaiser C, Uhlig S, Gerlach T, Korner M, Simon K, Kunath K, Florschutz K, Baronian K, Kunze G (2010) Evaluation and validation of a novel Arxula adeninivorans estrogen screen (nAES) assay and its application in analysis of wastewater, seawater, brackish water and urine. Sci Total Environ 408(23):6017–6026. doi: 10.1016/j.scitotenv.2010.08.050 PubMedCrossRefGoogle Scholar
  26. 26.
    Kaur P, Lingner A, Singh B, Boer E, Polajeva J, Steinborn G, Bode R, Gellissen G, Satyanarayana T, Kunze G (2007) APHO1 from the yeast Arxula adeninivorans encodes an acid phosphatase of broad substrate specificity. Anton Leeuw Int J G 91(1):45–55. doi: 10.1007/s10482-006-9094-6 CrossRefGoogle Scholar
  27. 27.
    Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32(2):87–100. doi: 10.1111/j.1574-6968.1985.tb01185.x CrossRefGoogle Scholar
  28. 28.
    Knabben I, Regestein L, Grumbach C, Steinbusch S, Kunze G, Büchs J (2010) Online determination of viable biomass up to very high cell densities in Arxula adeninivorans fermentations using an impedance signal. J Biotechnol 149(1–2):60–66. doi: 10.1016/j.jbiotec.2010.06.007 PubMedCrossRefGoogle Scholar
  29. 29.
    Knoll A, Bartsch S, Husemann B, Engel P, Schroer K, Ribeiro B, Stöckmann C, Seletzky J, Büchs J (2007) High cell density cultivation of recombinant yeasts and bacteria under non-pressurized and pressurized conditions in stirred tank bioreactors. J Biotechnol 132(2):167–179. doi: 10.1016/j.jbiotec.2007.06.010 PubMedCrossRefGoogle Scholar
  30. 30.
    Kottmeier K, Müller C, Huber R, Büchs J (2010) Increased product formation induced by a directed secondary substrate limitation in a batch Hansenula polymorpha culture. Appl Microbiol Biotechnol 86(1):93–101. doi: 10.1007/s00253-009-2285-0 PubMedCrossRefGoogle Scholar
  31. 31.
    Losen M, Frolich B, Pohl M, Büchs J (2004) Effect of oxygen limitation and medium composition on Escherichia coli fermentation in shake-flask cultures. Biotechnol Progr 20(4):1062–1068. doi: 10.1021/Bp034821 CrossRefGoogle Scholar
  32. 32.
    MacCabe AP, Ramon D (2001) Expression of the Aspergillus nidulans xlnC gene encoding the X-34 endo-xylanase is subject to carbon catabolite repression and pH control. World J Microbiol Biotechnol 17(1):57–60. doi: 10.1023/A:1016615817331 CrossRefGoogle Scholar
  33. 33.
    Maier U, Losen M, Büchs J (2004) Advances in understanding and modeling the gas-liquid mass transfer in shake flasks. Biochem Eng J 17(3):155–167. doi: 10.1016/S1369-703x(03)00174-8 CrossRefGoogle Scholar
  34. 34.
    Martin JF (1989) Regulation of secondary metabolism in actinomycetes. Molecular mechanisms for the control by phosphate of the biosynthesis of antibiotics and other secondary metabolites. CRC Press, Boca RatonGoogle Scholar
  35. 35.
    Middelhoven WJ, Dejong IM, Dewinter M (1991) Arxula-Adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Anton Leeuw Int J G 59(2):129–137. doi: 10.1007/Bf00445657 CrossRefGoogle Scholar
  36. 36.
    Minocha N, Kaur P, Satyanarayana T, Kunze G (2007) Acid phosphatase production by recombinant Arxula adeninivorans. Appl Microbiol Biotechnol 76(2):387–393. doi: 10.1007/s00253-007-1021-x PubMedCrossRefGoogle Scholar
  37. 37.
    Peter CP, Lotter S, Maier U, Büchs J (2004) Impact of out-of-phase conditions on screening results in shaking flask experiments. Biochem Eng J 17(3):205–215. doi: 10.1016/S1369-703x(03)00179-7 CrossRefGoogle Scholar
  38. 38.
    Pham HTM, Kunath K, Gehrmann L, Giersberg M, Tuerk J, Uhlig S, Hanke G, Simon K, Baronian K, Kunze G (2013) Application of modified Arxula adeninivorans yeast cells in an online biosensor for the detection of estrogenic compounds in wastewater samples. Sensor Actuator B Chem 185:628–637. doi: 10.1016/j.snb.2013.05.065 CrossRefGoogle Scholar
  39. 39.
    Qin YJ, Cabral JMS (1994) Kinetic-studies of the urease-catalyzed hydrolysis of urea in a buffer-free system. Appl Biochem Biotechnol 49(3):217–240. doi: 10.1007/Bf02783059 PubMedCrossRefGoogle Scholar
  40. 40.
    Roos W, Luckner M (1984) Relationships between proton extrusion and fluxes of ammonium-ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014Google Scholar
  41. 41.
    Rosel H, Kunze G (1995) Cloning and characterization of a tef gene for elongation-factor 1-alpha from the yeast Arxula adeninivorans. Curr Genet 28(4):360–366. doi: 10.1007/Bf00326434 PubMedCrossRefGoogle Scholar
  42. 42.
    Saito I, Honda H, Kawabe T, Mukumoto F, Shimizu M, Kobayashi T (2000) Comparison of biotin production by recombinant Sphingomonas sp under various agitation conditions. Biochem Eng J 5(2):129–136. doi: 10.1016/S1369-703x(00)00050-4 PubMedCrossRefGoogle Scholar
  43. 43.
    Sedzielewska KA, Boer E, Bellebna C, Wartmann T, Bode R, Melzer M, Baronian K, Kunze G (2012) Role of the AFRD1-encoded fumarate reductase in hypoxia and osmotolerance in Arxula adeninivorans. FEMS Yeast Res 12(8):924–937. doi: 10.1111/j.1567-1364.2012.00842.x PubMedCrossRefGoogle Scholar
  44. 44.
    Seletzky JM, Noack U, Hahn S, Knoll A, Amoabediny G, Büchs J (2007) An experimental comparison of respiration measuring techniques in fermenters and shake flasks: exhaust gas analyzer vs. RAMOS device vs. respirometer. J Ind Microbiol Biotechnol 34(2):123–130. doi: 10.1007/s10295-006-0176-2 PubMedCrossRefGoogle Scholar
  45. 45.
    Steinborn G, Gellissen G, Kunze G (2007) A novel vector element providing multicopy vector integration in Arxula adeninivorans. FEMS Yeast Res 7(7):1197–1205. doi: 10.1111/j.1567-1364.2007.00280.x PubMedCrossRefGoogle Scholar
  46. 46.
    Stöckmann C, Losen M, Dahlems U, Knocke C, Gellissen G, Büchs J (2003) Effect of oxygen supply on passaging, stabilising and screening of recombinant Hansenula polymorpha production strains in test tube cultures. FEMS Yeast Res 4(2):195–205. doi: 10.1016/S1567-1356(03)000147-8 PubMedCrossRefGoogle Scholar
  47. 47.
    Stöckmann C, Maier U, Anderlei T, Knocke C, Gellissen G, Büchs J (2003) The oxygen transfer rate as key parameter for the characterization of Hansenula polymorpha screening cultures. J Ind Microbiol Biotechnol 30(10):613–622. doi: 10.1007/s10295-003-0090-9 PubMedCrossRefGoogle Scholar
  48. 48.
    Stöckmann C, Scheidle M, Dittrich B, Merckelbach A, Hehmann G, Melmer G, Klee D, Büchs J, Kang HA, Gellissen G (2009) Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb Cell Fact 8. doi: 10.1186/1475-2859-8-22
  49. 49.
    Walker GM (1998) Yeast physiology and biotechnology. Wiley-VCH, WeinheimGoogle Scholar
  50. 50.
    Wartmann T, Kruger A, Adler K, Duc BM, Kunze I, Kunze G (1995) Temperature-dependent dimorphism of the yeast Arxula adeninivorans LS3. Anton Leeuw Int J G 68(3):215–223. doi: 10.1007/Bf00871818 CrossRefGoogle Scholar
  51. 51.
    Wartmann T, Stoltenburg R, Boer E, Sieber H, Bartelsen O, Gellissen G, Kunze G (2003) The ALEU2 gene-a new component for an Arxula adeninivorans-based expression platform. FEMS Yeast Res 3(2):223–232. doi: 10.1016/S1567-1356(02)00190-3 PubMedCrossRefGoogle Scholar
  52. 52.
    Yang XX, Wartmann T, Stoltenburg R, Kunze G (2000) Halotolerance of the yeast Arxula adeninivorans LS3. Anton Leeuw Int J G 77(4):303–311. doi: 10.1023/A:1002636606282 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • Christoph Stöckmann
    • 1
  • Thomas G. Palmen
    • 1
  • Kirsten Schroer
    • 1
    • 4
  • Gotthard Kunze
    • 2
  • Gerd Gellissen
    • 3
  • Jochen Büchs
    • 1
    Email author
  1. 1.AVT-Biochemical EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
  3. 3.Microbiology and Genetics, Department of Biology IVRWTH Aachen UniversityAachenGermany
  4. 4.Novartis Institutes for Biomedical ResearchBaselSwitzerland

Personalised recommendations