Advertisement

Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture

  • Ru Wang
  • Ping ZhengEmail author
  • Ya-Juan Xing
  • Meng Zhang
  • Abbas Ghulam
  • Zhi-qing Zhao
  • Wei Li
  • Lan Wang
Environmental Microbiology

Abstract

Heterotrophic denitrifying enriched culture (DEC) from a lab-scale high-rate denitrifying reactor was discovered to perform nitrate-dependent anaerobic ferrous oxidation (NAFO). The DEC was systematically investigated to reveal their denitrification activity, their NAFO activity, and the predominant microbial population. The DEC was capable of heterotrophic denitrification with methanol as the electron donor, and autotrophic denitrification with ferrous salt as the electron donor named NAFO. The conversion ratios of ferrous-Fe and nitrate-N were 87.41 and 98.74 %, and the consumption Fe/N ratio was 2.3:1 (mol/mol). The maximum reaction velocity and half saturation constant of Fe were 412.54 mg/(l h) and 8,276.44 mg/l, and the counterparts of N were 20.87 mg/(l h) and 322.58 mg/l, respectively. The predominant bacteria were Hyphomicrobium, Thauera, and Flavobacterium, and the predominant archaea were Methanomethylovorans, Methanohalophilus, and Methanolobus. The discovery of NAFO by heterotrophic DEC is significant for the development of wastewater treatment and the biogeochemical iron cycle and nitrogen cycle.

Keywords

Denitrifying enriched culture (DEC) Microbial community Heterotrophic denitrification Nitrate-dependent anaerobic ferrous oxidation (NAFO) 

Notes

Acknowledgments

Financial support for this work by the National Natural Science Foundation of China (51278457) and Zhejiang Provincial National Science Foundation (Z5110094) are greatly appreciated.

Supplementary material

10295_2014_1424_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    An S, Stone H, Nemati M (2011) Biological removal of nitrate by an oil reservoir culture capable of autotrophic and heterotrophic activities: kinetic evaluation and modeling of heterotrophic process. J Hazard Mater 190(1):686–693PubMedCrossRefGoogle Scholar
  2. 2.
    Association APH, Federation WPC, Federation WE (1915) Standard methods for the examination of water and wastewater, vol. 2. American Public Health Association, Washington, D.C.Google Scholar
  3. 3.
    Bae H-S, Im W-T, Suwa Y, Lee JM, Lee S-T, Chang Y-K (2009) Characterization of diverse heterocyclic amine-degrading denitrifying bacteria from various environments. Arch Microbiol 191(4):329–340PubMedCrossRefGoogle Scholar
  4. 4.
    Bernardet J-F, Segers P, Vancanneyt M, Berthe F, Kersters K, Vandamme P (1996) Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46(1):128–148CrossRefGoogle Scholar
  5. 5.
    Blöthe M, Roden EE (2009) Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol 75(21):6937–6940PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Chakraborty A, Picardal F (2013) Induction of nitrate-dependent Fe(II) oxidation by Fe(II) in Dechloromonas sp. strain UWNR4 and Acidovorax sp. strain 2AN. Appl Environ Microbiol 79(2):748–752PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Chakraborty A, Roden EE, Schieber J, Picardal F (2011) Enhanced growth of Acidovorax sp. strain 2AN during nitrate-dependent Fe(II) oxidation in batch and continuous-flow systems. Appl Environ Microbiol 77(24):8548–8556PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Chavarie C, Karamanev D, Godard F, Garnier A, Andre G (1993) Comparison of the kinetics of ferrous iron oxidation by three different strains of Thiobacillus ferrooxidans. Geomicrobiol J 11(1):57–63CrossRefGoogle Scholar
  9. 9.
    Emmerich M, Bhansali A, Lösekann-Behrens T, Schröder C, Kappler A, Behrens S (2012) Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia. Appl Environ Microbiol 78(12):4386–4399PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Feinberg LF, Srikanth R, Vachet RW, Holden JF (2008) Constraints on anaerobic respiration in the hyperthermophilic archaea Pyrobaculum islandicum and Pyrobaculum aerophilum. Appl Environ Microbiol 74(2):396–402PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Fesefeldt A, Kloos K, Bothe H, Lemmer H, Gliesche C (1998) Distribution of denitrification and nitrogen fixation genes in Hyphomicrobium spp. and other budding bacteria. Can J Microbiol 44(2):181–186CrossRefGoogle Scholar
  12. 12.
    Fredricks DN, Schubert MM, Myerson D (2005) Molecular identification of an invasive gingival bacterial community. Clin Infect Dis 41(1):e1–e4PubMedCrossRefGoogle Scholar
  13. 13.
    Hafenbradl D, Keller M, Dirmeier R, Rachel R, Roßnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166(5):308–314PubMedCrossRefGoogle Scholar
  14. 14.
    Hedrich S, Schlomann M, Johnson DB (2011) The iron-oxidizing Proteobacteria. Microbiology 157(Pt 6):1551–1564. doi: 10.1099/mic.0.045344-0 PubMedCrossRefGoogle Scholar
  15. 15.
    Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL (2005) Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol 55(3):1255–1265PubMedCrossRefGoogle Scholar
  16. 16.
    Isaka K, Kimura Y, Osaka T, Tsuneda S (2012) High-rate denitrification using polyethylene glycol gel carriers entrapping heterotrophic denitrifying bacteria. Water Res 46(16):4941–4948PubMedCrossRefGoogle Scholar
  17. 17.
    Jiang B, Parshina S, Van Doesburg W, Lomans B, Stams A (2005) Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. Int J Syst Evol Microbiol 55(6):2465–2470PubMedCrossRefGoogle Scholar
  18. 18.
    Karpuzcu ME, Stringfellow WT (2012) Kinetics of nitrate removal in wetlands receiving agricultural drainage. Ecol Eng 42:295–303CrossRefGoogle Scholar
  19. 19.
    Keller M, Braun F-J, Dirmeier R, Hafenbradl D, Burggraf S, Rachel R, Stetter KO (1995) Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH. Arch Microbiol 164(6):390–395PubMedCrossRefGoogle Scholar
  20. 20.
    Kim B-Y, Weon H-Y, Cousin S, Yoo S-H, Kwon S-W, Go S-J, Stackebrandt E (2006) Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 56(7):1645–1649PubMedCrossRefGoogle Scholar
  21. 21.
    Li W, Zheng P, Wang L, Zhang M, Lu H, Xing Y, Zhang J, Wang R, Song J, Ghulam A (2013) Physical characteristics and formation mechanism of denitrifying granular sludge in high-load reactor. Bioresource Technol 142:683–687CrossRefGoogle Scholar
  22. 22.
    Lins P, Schwarzenauer T, Reitschuler C, Wagner AO, Illmer P (2012) Methanogenic potential of formate in thermophilic anaerobic digestion. Waste Manag Res 30(10):1031–1040PubMedCrossRefGoogle Scholar
  23. 23.
    McCarty PL, Smith DP (1986) Anaerobic wastewater treatment. Environ Sci Technol 20(12):1200–1206CrossRefGoogle Scholar
  24. 24.
    Monod J (1949) The growth of bacterial cultures. Annu Rev Microbiol 3(1):371–394CrossRefGoogle Scholar
  25. 25.
    Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46PubMedCrossRefGoogle Scholar
  26. 26.
    Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedCrossRefGoogle Scholar
  27. 27.
    O’Reilly J, Lee C, Collins G, Chinalia F, Mahony T, O’Flaherty V (2009) Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilms. Water Res 43(14):3365–3374PubMedCrossRefGoogle Scholar
  28. 28.
    Özkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka JA (2007) Kinetics of iron oxidation by Leptospirillum ferriphilum dominated culture at pH below one. Biotechnol Bioeng 97(5):1121–1127PubMedCrossRefGoogle Scholar
  29. 29.
    Pandey R, Malhotra S, Rajvaidya A, Sharma S, Peshwe S, Raman V, Bal A (2004) Chemo-biochemical desulphurization of various gaseous streams on bench scale. Water Air Soil Pollut 154(1–4):295–311CrossRefGoogle Scholar
  30. 30.
    Paterek JR, Smith PH (1988) Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen†. Int J Syst Bacteriol 38(1):122–123CrossRefGoogle Scholar
  31. 31.
    Shen Z, Zhou Y, Wang J (2013) Comparison of denitrification performance and microbial diversity using starch/polylactic acid blends and ethanol as electron donor for nitrate removal. Bioresource Technol 131:33–39CrossRefGoogle Scholar
  32. 32.
    Straub KL, Benz M, Schink B, Widdel F (1996) Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol 62(4):1458–1460PubMedCentralPubMedGoogle Scholar
  33. 33.
    Völkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59(9):2918–2926PubMedCentralPubMedGoogle Scholar
  34. 34.
    Weber KA, Pollock J, Cole KA, O’Connor SM, Achenbach LA, Coates JD (2006) Anaerobic nitrate-dependent iron (II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002. Appl Environ Microbiol 72(1):686–694PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Whitman WB, Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Ludwig W, Suzuki K-i, Parte A (2012) Bergey’s manual® of systematic bacteriology, vol. 5. Springer, Berlin Heidelberg New YorkGoogle Scholar
  36. 36.
    Wu S-Y, Lai M-C (2011) Methanogenic archaea isolated from Taiwan’s Chelungpu fault. Appl Environ Microbiol 77(3):830–838PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • Ru Wang
    • 1
  • Ping Zheng
    • 1
    Email author
  • Ya-Juan Xing
    • 1
  • Meng Zhang
    • 1
  • Abbas Ghulam
    • 1
    • 3
  • Zhi-qing Zhao
    • 2
  • Wei Li
    • 1
  • Lan Wang
    • 1
  1. 1.Department of Environmental EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Quzhou CollegeQuzhouPeople’s Republic of China
  3. 3.Department of Chemical EngineeringUniversity of GujratGujratPakistan

Personalised recommendations