Two promising alkaline β-glucosidases isolated by functional metagenomics from agricultural soil, including one showing high tolerance towards harsh detergents, oxidants and glucose

  • Sophie Biver
  • Aurore Stroobants
  • Daniel Portetelle
  • Micheline Vandenbol


New β-glucosidase activities were identified by screening metagenomic libraries constructed with DNA isolated from the topsoil of a winter wheat field. Two of the corresponding proteins, displaying an unusual preference for alkaline conditions, were selected for purification by Ni-NTA chromatography. AS-Esc6, a 762-amino-acid enzyme belonging to glycoside hydrolase family 3, proved to be a mesophilic aryl-β-glucosidase with maximal activity around pH 8 and 40 °C. A similar pH optimum was found for AS-Esc10, a 475-amino-acid GH1-family enzyme, but this enzyme remained significantly active across a wider pH range and was also markedly more stable than AS-Esc6 at pH greater than 10. AS-Esc10 was found to degrade cellobiose and diverse aryl glycosides, with an optimal temperature of 60 °C and good stability up to 50 °C. Unlike AS-Esc6, which showed a classically low inhibitory constant for glucose (14 mM), AS-Esc10 showed enhanced activity in the presence of molar concentrations of glucose. AS-Esc10 was highly tolerant to hydrogen peroxide and also to sodium dodecyl sulfate, this being indicative of kinetic stability. This unique combination of properties makes AS-Esc10 a particularly promising candidate whose potential in biotechnological applications is worth exploring further.


Alkaline enzyme β-Glucosidase Detergent Functional metagenomics Glucose tolerance 


  1. 1.
    Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383PubMedCrossRefGoogle Scholar
  2. 2.
    Bhatia Y, Mishra S, Bisaria VS (2002) Microbial beta-glucosidases: cloning, properties, and applications. Crit Rev Biotechnol 22(4):375–407. doi:10.1080/07388550290789568 PubMedCrossRefGoogle Scholar
  3. 3.
    Biver S, Vandenbol M (2013) Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J Ind Microbiol Biotechnol 40(2):191–200. doi:10.1007/s10295-012-1217-7 PubMedCrossRefGoogle Scholar
  4. 4.
    Cunningham EL, Jaswal SS, Sohl JL, Agard DA (1999) Kinetic stability as a mechanism for protease longevity. Proc Natl Acad Sci USA 96(20):11008–11014PubMedCrossRefGoogle Scholar
  5. 5.
    Daniel R (2004) The soil metagenome–a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15(3):199–204. doi:10.1016/j.copbio.2004.04.005 PubMedCrossRefGoogle Scholar
  6. 6.
    Eriksson T, Börjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb Technol 31(3):353–364CrossRefGoogle Scholar
  7. 7.
    Fan H-X, Miao L-L, Liu Y, Liu H-C, Liu Z-P (2011) Gene cloning and characterization of a cold-adapted β-glucosidase belonging to glycosyl hydrolase family 1 from a psychrotolerant bacterium Micrococcus antarcticus. Enzyme Microb Technol 49(1):94–99. doi:10.1016/j.enzmictec.2011.03.001 PubMedCrossRefGoogle Scholar
  8. 8.
    Gudiksen KL, Gitlin I, Whitesides GM (2006) Differentiation of proteins based on characteristic patterns of association and denaturation in solutions of SDS. Proc Natl Acad Sci USA 103(21):7968–7972. doi:10.1073/pnas.0602816103 PubMedCrossRefGoogle Scholar
  9. 9.
    Harvey AJ, Hrmova M, De Gori R, Varghese JN, Fincher GB (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins 41(2):257–269PubMedCrossRefGoogle Scholar
  10. 10.
    Hill AD, Reilly PJ (2008) Computational analysis of glycoside hydrolase family 1 specificities. Biopolymers 89(11):1021–1031. doi:10.1002/bip.21052 PubMedCrossRefGoogle Scholar
  11. 11.
    Jabbour D, Klippel B, Antranikian G (2012) A novel thermostable and glucose-tolerant β-glucosidase from Fervidobacterium islandicum. Appl Microbiol Biotechnol 93(5):1947–1956. doi:10.1007/s00253-011-3406-0 PubMedCrossRefGoogle Scholar
  12. 12.
    Joo H-S, Chang C-S (2005) Oxidant and SDS-stable alkaline protease from a halo-tolerant Bacillus clausii I-52: enhanced production and simple purification. J Appl Microbiol 98(2):491–497. doi:10.1111/j.1365-2672.2004.02464.x PubMedCrossRefGoogle Scholar
  13. 13.
    Kalyani D, Lee K-M, Tiwari MK, Ramachandran P, Kim H, Kim I-W, Jeya M, Lee J-K (2012) Characterization of a recombinant aryl β-glucosidase from Neosartorya fischeri NRRL181. Appl Microbiol Biotechnol 94(2):413–423. doi:10.1007/s00253-011-3631-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P (2013) Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 1:e46. doi:10.7717/peerj.46 PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Kaya F, Heitmann JA Jr, Joyce TW (1995) Influence of surfactants on the enzymatic hydrolysis of xylan and cellulose. TAPPI J 78(10):150–157Google Scholar
  16. 16.
    Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696. doi:10.4061/2011/280696 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35(5):377–391. doi:10.1007/s10295-008-0327-8 PubMedCrossRefGoogle Scholar
  18. 18.
    Di Lauro B, Rossi M, Moracci M (2006) Characterization of a beta-glycosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius. Extremophiles 10(4):301–310. doi:10.1007/s00792-005-0500-1 PubMedCrossRefGoogle Scholar
  19. 19.
    Li G, Jiang Y, Fan X, Liu Y (2012) Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Bioresour Technol 123:15–22PubMedCrossRefGoogle Scholar
  20. 20.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Manning M, Colón W (2004) Structural basis of protein kinetic stability: resistance to sodium dodecyl sulfate suggests a central role for rigidity and a bias toward beta-sheet structure. Biochemistry 43(35):11248–11254. doi:10.1021/bi0491898 PubMedCrossRefGoogle Scholar
  22. 22.
    Matteotti C, Thonart P, Francis F, Haubruge E, Destain J, Brasseur C, Bauwens J, De Pauw E, Portetelle D, Vandenbol M (2011) New glucosidase activities identified by functional screening of a genomic DNA library from the gut microbiota of the termite Reticulitermes santonensis. Microbiol Res 166(8):629–642. doi:10.1016/j.micres.2011.01.001 PubMedCrossRefGoogle Scholar
  23. 23.
    Pérez-Pons JA, Rebordosa X, Querol E (1995) Properties of a novel glucose-enhanced β-glucosidase purified from Streptomyces sp. (ATCC 11238). Biochim Biophys Acta 2:145–153CrossRefGoogle Scholar
  24. 24.
    Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. doi:10.1038/nmeth.1701 PubMedCrossRefGoogle Scholar
  25. 25.
    Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Suppl 2):W116–W120. doi:10.1093/nar/gki442 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Rajasree KP, Mathew GM, Pandey A, Sukumaran RK (2013) Highly glucose tolerant β-glucosidase from Aspergillus unguis: NII 08123 for enhanced hydrolysis of biomass. J Ind Microbiol Biotechnol 40(9):967–975. doi:10.1007/s10295-013-1291-5 PubMedCrossRefGoogle Scholar
  27. 27.
    Rather M, Mishra S (2013) β-Glycosidases: an alternative enzyme based method for synthesis of alkyl-glycosides. Sustain Chem Process 1(1):7. doi:10.1186/2043-7129-1-7 CrossRefGoogle Scholar
  28. 28.
    Riou C, Salmon J-M, Vallier M-J, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl Environ Microbiol 64(10):3607–3614PubMedCentralPubMedGoogle Scholar
  29. 29.
    Saha BC, Bothast RJ (1996) Production, purification, and characterization of a highly glucose-tolerant novel beta-glucosidase from Candida peltata. Appl Environ Microbiol 62(9):3165–3170PubMedCentralPubMedGoogle Scholar
  30. 30.
    Sanchez-Ruiz JM (2010) Protein kinetic stability. Biophys Chem 148(1–3):1–15. doi:10.1016/j.bpc.2010.02.004 PubMedCrossRefGoogle Scholar
  31. 31.
    Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, Munaretto C, Ulas S, Stelzer M, Grote A, Scheer M, Schomburg D (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41(Database issue):D764–D772. doi:10.1093/nar/gks1049 PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Seo D-J, Fujita H, Sakoda A (2011) Effects of a non-ionic surfactant, Tween 20, on adsorption/desorption of saccharification enzymes onto/from lignocelluloses and saccharification rate. Adsorption 17(5):813–822. doi:10.1007/s10450-011-9340-8 CrossRefGoogle Scholar
  33. 33.
    Shah SR (2013) Chemistry and applications of cellulase in textile wet processing. Res J Eng Sci 2(7):1–5Google Scholar
  34. 34.
    Sørensen A, Lübeck M, Lübeck P, Ahring B (2013) Fungal beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3(3):612–631. doi:10.3390/biom3030612 CrossRefGoogle Scholar
  35. 35.
    Steele HL, Jaeger KE, Daniel R, Streit WR (2009) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16(1–2):25–37. doi:10.1159/000142892 PubMedCrossRefGoogle Scholar
  36. 36.
    Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Physiol B 109(1):1–62CrossRefGoogle Scholar
  37. 37.
    Teugjas H, Väljamäe P (2013) Selecting β-glucosidases to support cellulases in cellulose saccharification. Biotechnol Biofuels 6(1):105. doi:10.1186/1754-6834-6-105 PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Tsitsimpikou C, Christakopoulos P, Makropoulou M, Kekos D, Macris BJ, Kolisis FN (1997) Role of methanol on the catalytic behavior of β-glucosidase from Fusarium oxysporum. Biotechnol Lett 19(1):31–33. doi:10.1023/A:1018306802099 CrossRefGoogle Scholar
  39. 39.
    Uchiyama T, Miyazaki K, Yaoi K (2013) Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Biol Chem 288(25):18325–18334. doi:10.1074/jbc.M113.471342 PubMedCrossRefGoogle Scholar
  40. 40.
    Wang Y, Li J, Xu Y (2011) Characterization of novel β-glucosidases with transglycosylation properties from Trichosporon asahii. J Agric Food Chem 59(20):11219–11227. doi:10.1021/jf203693v PubMedCrossRefGoogle Scholar
  41. 41.
    Watt DK, Ono H, Hayashi K (1998) Agrobacterium tumefaciens beta-glucosidase is also an effective beta-xylosidase, and has a high transglycosylation activity in the presence of alcohols. Biochim Biophys Acta 1385(1):78–88PubMedCrossRefGoogle Scholar
  42. 42.
    Xu H, Xiong A-S, Zhao W, Tian Y-S, Peng R-H, Chen J-M, Yao Q-H (2011) Characterization of a glucose-, xylose-, sucrose-, and d-galactose-stimulated β-glucosidase from the alkalophilic bacterium Bacillus halodurans C-125. Curr Microbiol 62(3):833–839. doi:10.1007/s00284-010-9766-3 PubMedCrossRefGoogle Scholar
  43. 43.
    Yan TR, Lin CL (1997) Purification and characterization of a glucose-tolerant beta-glucosidase from Aspergillus niger CCRC 31494. Biosci Biotechnol Biochem 61(6):965–970PubMedCrossRefGoogle Scholar
  44. 44.
    Zheng F, Huang J, Yin Y, Ding S (2013) A novel neutral xylanase with high SDS resistance from Volvariella volvacea: characterization and its synergistic hydrolysis of wheat bran with acetyl xylan esterase. J Ind Microbiol Biotechnol 40(10):1083–1093. doi:10.1007/s10295-013-1312-4 PubMedCrossRefGoogle Scholar
  45. 45.
    Zhou J, Bao L, Chang L, Liu Z, You C, Lu H (2012) Beta-xylosidase activity of a GH3 glucosidase/xylosidase from yak rumen metagenome promotes the enzymatic degradation of hemicellulosic xylans. Lett Appl Microbiol 54(2):79–87. doi:10.1111/j.1472-765X.2011.03175.x PubMedCrossRefGoogle Scholar
  46. 46.
    Zilz L, Rau M, Budag N, Scharf M, Cavaco-Paulo A, Andreaus J (2013) Nonionic surfactants and dispersants for biopolishing and stonewashing with Hypocrea jecorina cellulases. Color Technol 129(1):49–54. doi:10.1111/cote.12003 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • Sophie Biver
    • 1
  • Aurore Stroobants
    • 1
  • Daniel Portetelle
    • 1
  • Micheline Vandenbol
    • 1
  1. 1.Microbiology and Genomics Unit, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium

Personalised recommendations