Advertisement

Replacing a suite of commercial pectinases with a single enzyme, pectate lyase B, in Saccharomyces cerevisiae fermentations of cull peaches

  • M. C. Edwards
  • T. Williams
  • S. Pattathil
  • M. G. Hahn
  • J. Doran-Peterson
Fermentation, Cell Culture and Bioengineering

Abstract

Fermentation of pectin-rich biomass with low concentrations of polysaccharides requires some treatment of the pectin, but does not need complete degradation of the polysaccharide to reach maximum ethanol yields. Cull peaches, whole rotten fruits that are not suitable for sale, contain high concentrations of glucose (27.7 % dw) and fructose (29.3 % dw) and low amounts of cellulose (2.8 % dw), hemicellulose (4.5 % dw) and pectin (5.6 % dw). Amounts of commercial saccharification enzymes, cellulase and cellobiase can be significantly decreased and commercial pectinase mixtures can be replaced completely with a single enzyme, pectate lyase (PelB), while maintaining ethanol yields above 90 % of the theoretical maximum. PelB does not completely degrade pectin; it only releases short chain oligogalacturonides. However, the activity of PelB is sufficient for the fermentation process, and its addition to fermentations without commercial pectinase increases ethanol production by ~12 %.

Keywords

Saccharomyces cerevisiae PelB Glycome profile Ethanol 

Notes

Acknowledgments

This research was funded in part by a University of Georgia Graduate Student Assistantship to M.C. Edwards, and the Center for Undergraduate Research Opportunities at the University of Georgia provided partial funding to support T.D. Williams. We thank Alyssa Balles for her assistance with the saccharifications. All authors have agreed to submit this manuscript to the “Journal of Industrial Microbiology and Biotechnology.” Fermentations and characterization of pectinases were partially supported by a grant from the US Department of Energy, Energy Efficiency and Renewable Energy (DE-EE0000410). The glycome profiling was supported by the BioEnergy Science Center administered by Oak Ridge National Laboratory and funded by a grant (DE-AC05-00OR22725) from the Office of Biological and Environmental Research, Office of Science, US Department of Energy. The generation of the CCRC series of plant cell wall glycan-directed monoclonal antibodies used in this work was supported by the NSF Plant Genome Program (DBI-0421683 and IOS-0923992).

Supplementary material

10295_2013_1394_MOESM1_ESM.docx (21 kb)
List of McAbs used in this work. (DOCX 20 kb)

References

  1. 1.
    Baron-Epel O, Gharyal PK, Schindler M (1988) Pectins as mediators of wall porosity in soybean cells. Planta 175:389–395PubMedCrossRefGoogle Scholar
  2. 2.
    Boland WE, Henriksen ED, Doran-Peterson J (2010) Characterization of two Paenibacillus amylolyticus strain 27 C64 pectate lyases with activity on highly methylated pectin. Appl Environ Microbiol 76(17):6006–6009. doi: 10.1128/AEM.00043-10 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  4. 4.
    Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carb Res 344(14):1879–1900. doi: 10.1016/j.carres.2009.05.021 CrossRefGoogle Scholar
  5. 5.
    Collmer A, Ried JL, Mount MS (1988) Assay methods for pectic enzymes. In: Wood WA, Kellogg ST (eds) Methods in enzymology, vol 161., Academic Press IncSan Diego, CA, pp 329–335Google Scholar
  6. 6.
    Doran-Peterson J, Jangid A, Brandon SK, DeCrescenzo-Henriksen E, Dien B, Ingram LO (2009) Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Meth Mol Biol 581:263–280. doi: 10.1007/978-1-60761-214-8_17 CrossRefGoogle Scholar
  7. 7.
    Dubois M, Gilles DA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356CrossRefGoogle Scholar
  8. 8.
    Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275–287. doi: 10.1002/bit.260360310 PubMedCrossRefGoogle Scholar
  9. 9.
    Knox JP, Linstead PJ, Peart J, Cooper C, Roberts K (1991) Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J 1(3):317–326. doi: 10.1046/j.1365-313X.1991.t01-9-00999.x PubMedCrossRefGoogle Scholar
  10. 10.
    Knox JP, Peart J, Neill SJ (1995) Identification of novel cell surface epitopes using a leaf epidermal-strip assay system. Planta 196:266–270Google Scholar
  11. 11.
    Lesiecki M, Bialas W, Lewandowicz G (2012) Enzymatic hydrolysis of potato pulp. Acta Sci Pol Technol Aliment 11(1):53–59PubMedGoogle Scholar
  12. 12.
    Marcus SE, Blake AW, Benians TA, Lee KJ, Poyser C, Donaldson L, Leroux O, Rogowski A, Petersen HL, Boraston A, Gilbert HJ, Willats WG, Knox JP (2010) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64(2):191–203. doi: 10.1111/j.1365-313X.2010.04319.x PubMedCrossRefGoogle Scholar
  13. 13.
    Marcus SE, Verhertbruggen Y, Herve C, Ordaz-Ortiz JJ, Farkas V, Pedersen HL, Willats WG, Knox JP (2008) Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biol 8:60–71. doi: 10.1186/1471-2229-8-60 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC (2005) Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal Biochem 339(1):69–72. doi: 10.1016/j.ab.2004.12.001 PubMedCrossRefGoogle Scholar
  15. 15.
    Pakarinen A, Zhang J, Brock T, Maijala P, Viikari L (2012) Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Biores Technol 107:275–281. doi: 10.1016/j.biortech.2011.12.101 CrossRefGoogle Scholar
  16. 16.
    Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O’Shea B, Rossi R, Leoff C, Freshour G, Narra R, O’Neil M, York WS, Hahn MG (2010) A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiol 153(2):514–525. doi: 10.1104/pp.109.151985 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Pattathil S, Avci U, Miller JS, Hahn MG (2012) Immunological approaches to plant cell wall and biomass characterization: Glycome profiling. Meth Mol Biol 908:61–72. doi: 10.1007/978-1-61779-956-3_6 Google Scholar
  18. 18.
    R Development Core Team, (2006) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org
  19. 19.
    Roberts DW, Hills DJ (1985) Enzyme pretreatment of peach solid wastes used for ethanol fermentation. Agric Waste 12:173–184CrossRefGoogle Scholar
  20. 20.
    Sandhu SK, Oberoi HS, Dhaliwal SS, Babbar N, Kaur U, Nanda D, Kumar D (2012) Ethanol production from Kinnow mandarin (Citrus reticulata) peels via simultaneous saccharification and fermentation using crude enzyme produced by Aspergillus oryzae adn the thermotolerant Pichia kudriavzevii strain. Ann Micro Biol 62:655–666CrossRefGoogle Scholar
  21. 21.
    Smallwood M, Beven A, Donovan N, Neill SJ, Peart J, Roberts K, Knox JP (1994) Localization of cell wall proteins in relation to the developmental anatomy of the carrot root apex. Plant J 5:237–246CrossRefGoogle Scholar
  22. 22.
    Soriano M, Blanco A, Diaz P, Pastor FI (2000) An unusual pectate lyase from a Bacillus sp. with high activity on pectin: cloning and characterization. Microbiology 146(Pt 1):89–95PubMedGoogle Scholar
  23. 23.
    Wang T, Zabotina O, Hong M (2012) Pectin-cellulose interactions in the Arabidopsis primary cell wall from 2D magic-angle-spinning solid-state nuclear magnetic resonance. Biochemistry 51:9846–9856PubMedCrossRefGoogle Scholar
  24. 24.
    Wilkins MR, Widmer W, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by S. cerevisiae to produce ethanol. Process Biochem 42:1614–1619CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2014

Authors and Affiliations

  • M. C. Edwards
    • 1
  • T. Williams
    • 1
  • S. Pattathil
    • 2
    • 3
  • M. G. Hahn
    • 2
    • 3
    • 4
  • J. Doran-Peterson
    • 1
  1. 1.Department of MicrobiologyUniversity of GeorgiaAthensUSA
  2. 2.Complex Carbohydrate Research CenterUniversity of GeorgiaAthensUSA
  3. 3.BioEnergy Science CenterOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Department of Plant BiologyUniversity of GeorgiaAthensUSA

Personalised recommendations