Cloning, characterization and application of a glyceraldehyde-3-phosphate dehydrogenase promoter from Aspergillusterreus

Short Communication

Abstract

It is important to develop native and highly efficient promoters for effective genetic engineering of filamentous fungi. Although Aspergillusterreus is an important industrial fungus for the production of itaconic acid and lovastatin, the available genetic toolbox for this microorganism is still rather limited. We have cloned the 5′ upstream region of the glyceraldehyde-3-phosphate dehydrogenase gene (gpd; 2,150 bp from the start codon) from A. terreus CICC 40205 and subsequently confirmed its promoter function using sgfp (synthetic green fluorescent protein) as the reporter. The sequence of the promoter PgpdAt was further analysed by systematic deletion to obtain an effective and compact functional promoter. Two truncated versions of PgpdAt (1,081 and 630 bp) were also able to drive sgfp expression in A. terreus. The activities of these three PgpdAt promoters of varying different lengths were further confirmed by fluorescence, western blot and transcription. The shortest one (630 bp) was successfully applied as a driver of vgb expression in the genetic engineering of A. terreus. The function of expressed haemoglobin was demonstrated by the CO (carbon monoxide)-difference spectrum and enhanced oxygen uptake rate, glucose consumption and itaconic acid titer. Our study was successful in developing and validating an efficient and compact native promoter for genetic engineering of A. terreus.

Keywords

Aspergillusterreus Glyceraldehyde-3-phosphate dehydrogenase promoter Native promoter Promoter function Vitreoscilla haemoglobin 

Notes

Acknowledgments

We are grateful to Chinese Academy of Sciences for the financial support.

Supplementary material

10295_2013_1385_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2436 kb)

References

  1. 1.
    Lubertozzi D, Keasling JD (2009) Developing Aspergillus as a host for heterologous expression. Biotechnol Adv 27:53–75PubMedCrossRefGoogle Scholar
  2. 2.
    Klement T, Buchs J (2013) Itaconic acid—a biotechnological process in change. Bioresour Technol 135:422–431PubMedCrossRefGoogle Scholar
  3. 3.
    Lai LST, Hung CS, Lo CC (2007) Effects of lactose and glucose on production of itaconic acid and lovastatin by Aspergillus terreus ATCC 20542. J Biosci Bioeng 104(1):9–13PubMedCrossRefGoogle Scholar
  4. 4.
    Meyer V (2008) Genetic engineering of filamentous fungi–progress obstacles and future trends. Biotechnol Adv 26:177–185PubMedCrossRefGoogle Scholar
  5. 5.
    Lubertozzi D, Keasling JD (2006) Marker and promoter effects on heterologous expression in Aspergillus nidulans. Appl Microbiol Biotechnol 72:1014–1023PubMedCrossRefGoogle Scholar
  6. 6.
    Ganzlin M, Rinas U (2008) In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using highthroughput screening and controlled bioreactor cultivation techniques. J Biotechnol 135:266–271PubMedCrossRefGoogle Scholar
  7. 7.
    Kanemori Y, Gomi K, Kitamoto K, Kumagai C, Tamura G (1999) Insertion analysis of putative functional elements in the promoter region of the Aspergillus oryzae Taka-amylase A gene (amyB) using a heterologous Aspergillus nidulans amdS-lacZ fusion gene system. Biosci Biotechnol Biochem 63:180–183PubMedCrossRefGoogle Scholar
  8. 8.
    Roth AH, Dersch P (2010) A novel expression system for intracellular production and purification of recombinant affinity-tagged proteins in Aspergillus niger. Appl Microbiol Biotechnol 86:659–670PubMedCrossRefGoogle Scholar
  9. 9.
    Cao Y, Jiao R, Xia Y (2012) A strong promoter PMagpd provides a tool for high gene expression in entomopathogenic fungus Metarhizium acridum. Biotechnol Lett 34:557–562PubMedCrossRefGoogle Scholar
  10. 10.
    Kim JG, Choi YD, Chang YJ, Kim SU (2003) Genetic transformation of Monascus purpureus DSM1379. Biotechnol Lett 25:1509–1514PubMedCrossRefGoogle Scholar
  11. 11.
    Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede RD, Pouwels PH, van den Hondel CA (1990) Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93:101–109PubMedCrossRefGoogle Scholar
  12. 12.
    Van Bogaert IN, De Maeseneire SL, Develter D, Soetaert W, Vandamme EJ (2008) Cloning and characterisation of the glyceraldehyde 3-phosphate dehydrogenase gene of Candida bombicola and use of its promoter. J Ind Microbiol Biotechnol 35:1085–1092PubMedCrossRefGoogle Scholar
  13. 13.
    Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M (2013) Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Appl Microbiol Biotechnol 97:259–267PubMedCrossRefGoogle Scholar
  14. 14.
    Dave K, Punekar NS (2011) Utility of Aspergillus niger citrate synthase promoter for heterologous expression. J Biotechnol 155:173–177PubMedCrossRefGoogle Scholar
  15. 15.
    Bando H, Hisada H, Ishida H, Hata Y, Katakura Y, Kondo A (2011) Isolation of a novel promoter for efficient protein expression by Aspergillus oryzae in solid-state culture. Appl Microbiol Biotechnol 92:561–569PubMedCrossRefGoogle Scholar
  16. 16.
    Fleissner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87:1255–1270PubMedCrossRefGoogle Scholar
  17. 17.
    Liao XG, Fang WG, Zhang YJ, Fan YH, Wu XW, Zhou Q, Pei Y (2008) Characterization of a highly active promoter PBbgpd in Beauveria bassiana. Curr Microbiol 57:121–126PubMedCrossRefGoogle Scholar
  18. 18.
    Kuo CY, Chou SY, Huang CT (2004) Cloning of glyceraldehyde-3-phosphate dehydrogenase gene and use of the gpd promoter for transformation in Flammulina velutipes. Appl Microbiol Biotechnol 65:593–599PubMedCrossRefGoogle Scholar
  19. 19.
    Tevz G, Bencina M, Legisa M (2010) Enhancing itaconic acid production by Aspergillus terreus. Appl Microbiol Biotechnol 87:1657–1664PubMedCrossRefGoogle Scholar
  20. 20.
    Lin YH, Li YF, Huang MC, Tsai YC (2004) Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate effect of a short break in aeration during culture. Biotechnol Lett 26:1067–1072PubMedCrossRefGoogle Scholar
  21. 21.
    Villanueva A, Maccabe AP, Buesa J, Ramon D (1999) Apparent mRNA instability in Aspergillus nidulans and Aspergillus terreus of a heterologous cDNA encoding the major capsid antigen of Rotavirus. Rev Iberoam Micol 16:130–135PubMedGoogle Scholar
  22. 22.
    Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M (2011) A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48:602–611PubMedCrossRefGoogle Scholar
  23. 23.
    Wen Y, Song Y, Li JL (2001) The effects of Vitreoscilla hemoglobin expression on growth and antibiotic production in Streptomyces cinnamonensis. Chin J Biotechnol 17:24–28Google Scholar
  24. 24.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  25. 25.
    Song P, Cai C, Skokut M, Kosegi B, Petolino J (2002) Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS-derived transgenic maize. Plant Cell Rep 20:948–954CrossRefGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  27. 27.
    Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P (2013) Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl Microbiol Biotechnol 97:3901–3911PubMedCrossRefGoogle Scholar
  28. 28.
    Punt PJ, Kramer C, Kuyvenhoven A, Pouwels PH, van den Hondel CA (1992) An upstream activating sequence from the Aspergillus nidulans gpdA gene. Gene 120:67–73PubMedCrossRefGoogle Scholar
  29. 29.
    Hirano T, Sato T, Yaegashi K, Enei H (2000) Efficient transformation of the edible basidiomycete Lentinus edodes with a vector using a glyceraldehyde-3-phosphate dehydrogenase promoter to hygromycin B resistance. Mol Gen Genet 263:1047–1052PubMedCrossRefGoogle Scholar
  30. 30.
    Wei XX, Chen GQ (2008) Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol 436:273–287PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K (2007) Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol Adv 25:123–136PubMedCrossRefGoogle Scholar
  32. 32.
    Hofmann G, Diano A, Nielsen J (2009) Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger. Metab Eng 11:8–12PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  1. 1.Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina

Personalised recommendations