Strain-specific proteogenomics accelerates the discovery of natural products via their biosynthetic pathways

  • Jessica C. Albright
  • Anthony W. Goering
  • James R. Doroghazi
  • William W. Metcalf
  • Neil L. Kelleher
Original Article

Abstract

The use of proteomics for direct detection of expressed pathways producing natural products has yielded many new compounds, even when used in a screening mode without a bacterial genome sequence available. Here we quantify the advantages of having draft DNA-sequence available for strain-specific proteomics using the latest in ultrahigh-resolution mass spectrometry for both proteins and the small molecules they generate. Using the draft sequence of Streptomyces lilacinus NRRL B-1968, we show a >tenfold increase in the number of peptide identifications vs. using publicly available databases. Detected in this strain were six expressed gene clusters with varying homology to those known. To date, we have identified three of these clusters as encoding for the production of griseobactin (known), rakicidin D (an orphan NRPS/PKS hybrid cluster), and a putative thr and DHB-containing siderophore produced by a new non-ribosomal peptide sythetase gene cluster. The remaining three clusters show lower homology to those known, and likely encode enzymes for production of novel compounds. Using an interpreted strain-specific DNA sequence enables deep proteomics for the detection of multiple pathways and their encoded natural products in a single cultured bacterium.

Keywords

Proteomics Natural products Mass spectrometry Metabolomics Genome mining 

Notes

Acknowledgments

The Department of Chemistry at Northwestern University and the following grants from the National Institutes of Health supported this work: GM 067725 from NIGMS (NLK) and GM 077596 from NIGMS (WWM). We also acknowledge support from the Institute for Genomic Biology IGB Fellows Program at UIUC (JRD). The authors would also like to thank Claudia K. Jones for her scholarly work.

Supplementary material

10295_2013_1373_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 15 kb)
10295_2013_1373_MOESM2_ESM.tif (28.9 mb)
Supplementary material 2 (TIFF 29616 kb)
10295_2013_1373_MOESM3_ESM.tif (24.8 mb)
Supplementary material 3 (TIFF 25373 kb)

References

  1. 1.
    Antibase: the natural compound identifier (2011) Wiley VCH, WeinheimGoogle Scholar
  2. 2.
    Bumpus SB, Evans BS, Thomas PM, Ntai I, Kelleher NL (2009) A proteomics approach to discovering natural products and their biosynthetic pathways. Nat Biotechnol 27(10):951–956PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Caboche S, Pupin M, Leclere V, Fontaine A, Jacques P, Kucherov G (2008) NORINE: a database of nonribosomal peptides. Nucleic Acids Res 36:D326–D331PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Carr G, Poulsen M, Klassen JL, Hou Y, Wyche TP, Bugni TS, Currie CR, Clardy J (2012) Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin. Org Lett 14(11):2822–2825PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Challis GL (2008) Genome mining for novel natural product discovery. J Med Chem 51(9):2618–2628PubMedCrossRefGoogle Scholar
  6. 6.
    Chen Y, McClure RA, Zheng Y, Thomson RJ, Kelleher NL (2013) Proteomics guided discovery of flavopeptins: anti-proliferative aldehydes synthesized by a reductase domain-containing non-ribosomal peptide synthetase. J Am Chem Soc 135(28):10449–10456PubMedCrossRefGoogle Scholar
  7. 7.
    Chen Y, Ntai I, Ju KS, Unger M, Zamdborg L, Robinson SJ, Doroghazi JR, Labeda DP, Metcalf WW, Kelleher NL (2012) A proteomic survey of nonribosomal peptide and polyketide biosynthesis in Actinobacteria. J Proteome Res 11(1):85–94PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Chen Y, Unger M, Ntai I, McClure RA, Albright JC, Thomson RJ, Kelleher NL (2013) Gobichelin A and B: mixed-ligand siderophores discovered using proteomics. Med Chem Comm 4(1):233–238CrossRefGoogle Scholar
  9. 9.
    Dictionary of natural products (2013) CRC Press, Boca RatonGoogle Scholar
  10. 10.
    Doroghazi JR, Ju KS, Brown DW, Labeda DP, Deng Z, Metcalf WW, Chen W, Price NP (2011) Genome sequences of three tunicamycin-producing Streptomyces strains, S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396. J Bacteriol 193(24):7021–7022PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dorrestein PC, Blackhall J, Straight PD, Fischbach MA, Garneau-Tsodikova S, Edwards DJ, McLaughlin S, Lin M, Gerwick WH, Kolter R, Walsh CT, Kelleher NL (2006) Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. Biochem US 45(6):1537–1546CrossRefGoogle Scholar
  12. 12.
    Evans BS, Ntai I, Chen YQ, Robinson SJ, Kelleher NL (2011) Proteomics-based discovery of koranimine, a cyclic imine natural product. J Am Chem Soc 133(19):7316–7319PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106(8):3468–3496PubMedCrossRefGoogle Scholar
  14. 14.
    Igarashi M, Shida T, Sasaki Y, Kinoshita N, Naganawa H, Hamada M, Takeuchi T (1999) Vinylamycin, a new depsipeptide antibiotic, from Streptomyces sp. Jpn J Antibiot 52(10):873–879CrossRefGoogle Scholar
  15. 15.
    Igarishi Y, Shimasaki R, Miyanaga S, Oku N, Onaka H, Sakurai H, Saiki I, Kitani S, Nihara T, Wimonsiravude W, Panbangred W (2010) Rakicidin D: an inhibitor of tumor cell invasion from marine-derived Streptomyces sp. Nature 63:563–5654Google Scholar
  16. 16.
    Meier JL, Niessen S, Hoover HS, Foley TL, Cravatt BF, Burkart MD (2009) An orthogonal active site identification system (OASIS) for proteomic profiling of natural product biosynthesis. ACS Chem Biol 4(11):948–957PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Meier JL, Patel AD, Niessen S, Meehan M, Kersten R, Yang JY, Rothmann M, Cravatt BF, Dorrestein PC, Burkart MD, Bafna V (2011) Practical 4’-phosphopantetheine active site discovery from proteomic samples. J Proteome Res 10(1):320–329PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Meluzzi D, Zheng WH, Hensler M, Nizet V, Dorrestein PC (2008) Top-down mass spectrometry on low-resolution instruments: characterization of phosphopantetheinylated carrier domains in polyketide and non-ribosomal biosynthetic pathways. Bioorg Med Chem Lett 18(10):3107–3111PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70(3):461–477PubMedCrossRefGoogle Scholar
  20. 20.
    Patzer SI, Braun V (2010) Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974. J Bacteriol 192(2):426–435PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Rottig M, Medema MH, Blin K, Weber T, Rausch C, Kohlbacher O (2011) NRPSpredictor2-a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res 39:W362–W367PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7(9):1753–1760PubMedCrossRefGoogle Scholar
  23. 23.
    Udwary DW, Gontang EA, Jones AC, Jones CS, Schultz AW, Winter JM, Yang JY, Beauchemin N, Capson TL, Clark BR, Esquenazi E, Eustaquio AS, Freel K, Gerwick L, Gerwick WH, Gonzalez D, Liu WT, Malloy KL, Maloney KN, Nett M, Nunnery JK, Penn K, Prieto-Davo A, Simmons TL, Weitz S, Wilson MC, Tisa LS, Dorrestein PC, Moore BS (2011) Significant natural product biosynthetic potential of actinorhizal symbionts of the genus Frankia, as revealed by comparative genomic and proteomic analyses. Appl Environ Microb 77(11):3617–3625CrossRefGoogle Scholar
  24. 24.
    van Wezel GP, McDowall KJ (2011) The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat Prod Rep 28(7):1311–1333PubMedCrossRefGoogle Scholar
  25. 25.
    Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics. Science 303:1805–1810PubMedCrossRefGoogle Scholar
  26. 26.
    Walsh CT, Fischbach MA (2010) Natural products version 2.0: connecting genes to molecules. J Am Chem Soc 132(8):2469–2493PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yamazaki Y, Kunimoto S, Ikeda D (2007) Rakicidin A: a hypoxia-selective cytotoxin. Biol Pharm Bull 30(2):261–265PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Jessica C. Albright
    • 1
  • Anthony W. Goering
    • 1
  • James R. Doroghazi
    • 2
  • William W. Metcalf
    • 2
  • Neil L. Kelleher
    • 1
  1. 1.Departments of Chemistry, Molecular Biosciences, and the Feinberg School of MedicineNorthwestern UniversityEvanstonUSA
  2. 2.Department of Microbiology and the Institute of Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations