GH52 xylosidase from Geobacillus stearothermophilus: characterization and introduction of xylanase activity by site-directed mutagenesis of Tyr509

  • Zongqing Huang
  • Xiaoshuang Liu
  • Shaowei Zhang
  • Ziduo Liu
Environmental Microbiology


A xylosidase gene, gsxyn, was cloned from the deep-sea thermophilic Geobacillus stearothermophilus, which consisted of 2,118 bp and encoded a protein of 705 amino acids with a calculated molecular mass of 79.8 kDa. The GSxyn of glycoside hydrolase family 52 (GH52) displayed its maximum activity at 70 °C and pH 5.5. The Km and kcat values of GSxyn for ρNPX were 0.48 mM and 36.64 s−1, respectively. Interestingly, a new exo-xylanase activity was introduced into GSxyn by mutating the tyrosine509 into glutamic acid, whereas the resultant enzyme variant, Y509E, retained the xylosidase activity. The optimum xylanase activity of theY509E mutant displayed at pH 6.5 and 50 °C, and retained approximately 45 % of its maximal activity at 55 °C, pH 6.5 for 60 min. The Km and kcat values of the xylanase activity of Y509E mutant for beechwood xylan were 5.10 mg/ml and 22.53 s−1, respectively. The optimum xylosidase activity of theY509E mutant displayed at pH 5.5 and 60 °C. The Km and kcat values of the xylosidase activity of Y509E mutant for ρNPX were 0.51 mM and 22.53 s−1, respectively. This report demonstrated that GH52 xylosidase has provided a platform for generating bifunctional enzymes for industrially significant and complex substrates, such as plant cell wall.


GH52 xylosidase Xylanase Geobacillus stearothermophilus Biotechnology Protein engineering 



This study was supported by grants from the National Natural Science Foundation of China (NO. J1103510).

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Conflict of interest

The authors claim that they have no competing interests.


  1. 1.
    Bravman T, Belakhov V, Solomon D, Shoham G, Henrissat B, Baasov T, Shoham Y (2003) Identification of the catalytic residues in family 52 glycoside hydrolase, a beta-xylosidase from Geobacillus stearothermophilus T-6. J Biol Chem 278:26742–26749PubMedCrossRefGoogle Scholar
  2. 2.
    Bravman T, Zolotnitsky G, Belakhov V, Shoham G, Henrissat B, Baasov T, Shoham Y (2003) Detailed kinetic analysis of a family 52 glycoside hydrolase: a beta-xylosidase from Geobacillus stearothermophilus. Biochemistry 42:10528–10536PubMedCrossRefGoogle Scholar
  3. 3.
    Bravman T, Zolotnitsky G, Shulami S, Belakhov V, Solomon D, Baasov T, Shoham G, Shoham Y (2001) Stereochemistry of family 52 glycosyl hydrolases: a beta-xylosidase from Bacillus stearothermophilus T-6 is a retaining enzyme. FEBS Lett 495:39–43PubMedCrossRefGoogle Scholar
  4. 4.
    Brux C, Niefind K, Ben-David A, Leon M, Shoham G, Shoham Y, Schomburg D (2005) Crystallization and preliminary crystallographic analysis of a family 43 beta-d-xylosidase from Geobacillus stearothermophilus T-6. Acta Crystallogr F-Struct Biol Cryst Commun 61:1054–1057CrossRefGoogle Scholar
  5. 5.
    Cartmell A, Topakas E, Ducros VMA, Suits MDL, Davies GJ, Gilbert HJ (2008) The Cellvibrio japonicus mannanase CjMan26C displays a unique exo-mode of action that is conferred by subtle changes to the distal region of the active site. J Biol Chem 283:34403–34413PubMedCrossRefGoogle Scholar
  6. 6.
    Contreras LM, Gomez J, Prieto J, Clemente-Jimenez JM, Las Heras-Vazquez FJ, Rodriguez-Vico F, Blanco FJ, Neira JL (2008) The family 52 beta-xylosidase from Geobacillus stearothermophilus is a dimer: structural and biophysical characterization of a glycoside hydrolase. Biochim Biophys Acta 1784:1924–1934PubMedCrossRefGoogle Scholar
  7. 7.
    Dilokpimol A, Nakai H, Gotfredsen CH, Appeldoorn M, Baumann MJ, Nakai N, Schols HA, Hachem MA, Svensson B (2011) Enzymatic synthesis of beta-xylosyl-oligosaccharides by transxylosylation using two beta-xylosidases of glycoside hydrolase family 3 from Aspergillus nidulans FGSC A4. Carbohydr Res 346:421–429PubMedCrossRefGoogle Scholar
  8. 8.
    Fekete CA, Kiss L (2012) Purification and characterization of a recombinant beta-d-xylosidase from Thermobifida fusca TM51. Protein J 31:641–650PubMedCrossRefGoogle Scholar
  9. 9.
    Graciano L, Correa JM, Gandra RF, Seixas FAV, Kadowaki MK, Sampaio SC, Silva JLD, Osaku CA, Simao RDG (2012) The cloning, expression, purification, characterization and modeled structure of Caulobacter crescentus beta-Xylosidase I. World J Microbiol Biotechnol 28:2879–2888PubMedCrossRefGoogle Scholar
  10. 10.
    Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59:1725–1730PubMedCentralPubMedGoogle Scholar
  11. 11.
    Knob A, Terrasan CRF, Carmona E (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407CrossRefGoogle Scholar
  12. 12.
    Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and beta-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289PubMedCrossRefGoogle Scholar
  13. 13.
    Maalej I, Belhaj I, Masmoudi NF, Belghith H (2009) Highly thermostable xylanase of the thermophilic fungus Talaromyces thermophilus: purification and characterization. Appl Biochem Biotechnol 158:200–212PubMedCrossRefGoogle Scholar
  14. 14.
    McKee LS, Pena MJ, Rogowski A, Jackson A, Lewis RJ, York WS, Krogh KB, Vikso-Nielsen A, Skjot M, Gilbert HJ, Marles-Wright J (2012) Introducing endo-xylanase activity into an exo-acting arabinofuranosidase that targets side chains. Proc Natl Acad Sci USA 109:6537–6542PubMedCrossRefGoogle Scholar
  15. 15.
    Michelin M, Peixoto-Nogueira SC, Silva TM, Jorge JA, Terenzi HF, Teixeira JA, Polizeli M (2012) A novel xylan degrading beta-d-xylosidase: purification and biochemical characterization. World J Microbiol Biotechnol 28:3179–3186PubMedCrossRefGoogle Scholar
  16. 16.
    Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1:127–132CrossRefGoogle Scholar
  17. 17.
    Nanmori T, Watanabe T, Shinke R, Kohno A, Kawamura Y (1990) Purification and properties of thermostable xylanase and beta-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. J Bacteriol 172:6669–6672PubMedCentralPubMedGoogle Scholar
  18. 18.
    Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591PubMedCrossRefGoogle Scholar
  19. 19.
    Proctor MR, Taylor EJ, Nurizzo D, Turkenburg JP, Lloyd RM, Vardakou M, Davies GJ, Gilbert HJ (2005) Tailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A. Proc Natl Acad Sci USA 102:2697–2702PubMedCrossRefGoogle Scholar
  20. 20.
    Quintero D, Velasco Z, Hurtado-Gomez E, Neira JL, Contreras LM (2007) Isolation and characterization of a thermostable beta-xylosidase in the thermophilic bacterium Geobacillus pallidus. Biochim Biophys Acta 1774:510–518PubMedCrossRefGoogle Scholar
  21. 21.
    Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228PubMedCrossRefGoogle Scholar
  22. 22.
    Shao W, Wiegel J (1992) Purification and characterization of a thermostable beta-xylosidase from Thermoanaerobacter ethanolicus. J Bacteriol 174:5848–5853PubMedCentralPubMedGoogle Scholar
  23. 23.
    Shao WL, Xue YM, Wu AL, Kataeva I, Pei JJ, Wu HW, Wiegel J (2011) Characterization of a Novel beta-Xylosidase, XylC, from Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Environ Microbiol 77:719–726PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Suzuki T, Kitagawa E, Sakakibara F, Ibata K, Usui K, Kawai K (2001) Cloning, expression, and characterization of a family 52 beta-xylosidase gene (xysB) of a multiple-xylanase-producing bacterium, Aeromonas caviae ME-1. Biosci Biotechnol Biochem 65:487–494PubMedCrossRefGoogle Scholar
  25. 25.
    Vallmitjana M, Ferrer-Navarro M, Planell R, Abel M, Ausin C, Querol E, Planas A, Perez-Pons JA (2001) Mechanism of the family 1 beta-glucosidase from Streptomyces sp: catalytic residues and kinetic studies. Biochemistry 40:5975–5982PubMedCrossRefGoogle Scholar
  26. 26.
    Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E, Bauer JC (1994) Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151:119–123PubMedCrossRefGoogle Scholar
  27. 27.
    Wilson, K. (2001) Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol Chapter 2:Unit 2 4Google Scholar
  28. 28.
    Xue Y, Shao W (2004) Expression and characterization of a thermostable beta-xylosidase from the hyperthermophile, Thermotoga maritima. Biotechnol Lett 26:1511–1515PubMedCrossRefGoogle Scholar
  29. 29.
    Yang JK, Yoon HJ, Ahn HJ, Lee BI, Pedelacq JD, Liong EC, Berendzen J, Laivenieks M, Vieille C, Zeikus GJ, Vocadlo DJ, Withers SG, Suh SW (2004) Crystal structure of beta-d-xylosidase from Thermoanaerobacterium saccharolyticum, a family 39 glycoside hydrolase. J Mol Biol 335:155–165PubMedCrossRefGoogle Scholar
  30. 30.
    Yaoi K, Kondo H, Hiyoshi A, Noro N, Sugimoto H, Tsuda S, Mitsuishi Y, Miyazaki K (2007) The structural basis for the exo-mode of action in GH74 oligoxyloglucan reducing end-specific cellobiohydrolase. J Mol Biol 370:53–62PubMedCrossRefGoogle Scholar
  31. 31.
    Zhou J, Bao L, Chang L, Zhou Y, Lu H (2012) Biochemical and kinetic characterization of GH43 beta-d-xylosidase/alpha-l-arabinofuranosidase and GH30 alpha-l-arabinofuranosidase/beta-d-xylosidase from rumen metagenome. J Ind Microbiol Biotechnol 39:143–152PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Zongqing Huang
    • 1
  • Xiaoshuang Liu
    • 1
  • Shaowei Zhang
    • 1
  • Ziduo Liu
    • 1
  1. 1.State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations