Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering

  • Jian Zha
  • Minghua Shen
  • Menglong Hu
  • Hao Song
  • Yingjin Yuan


Fermentation of xylose in lignocellulosic hydrolysates by Saccharomyces cerevisiae has been achieved through heterologous expression of the xylose reductase (XR)–xylitol dehydrogenase (XDH) pathway. However, the fermentation efficiency is far from the requirement for industrial application due to high yield of the byproduct xylitol, low ethanol yield, and low xylose consumption rate. Through evolutionary engineering, an improved xylose-utilizing strain SyBE005 was obtained with 78.3 % lower xylitol production and a 2.6-fold higher specific ethanol production rate than those of the parent strain SyBE004, which expressed an engineered NADP+-preferring XDH. The transcriptional differences between SyBE005 and SyBE004 were investigated by quantitative RT-PCR. Genes including XYL1, XYL2, and XKS1 in the initial xylose metabolic pathway showed the highest up-regulation in SyBE005. The increased expression of XYL1 and XYL2 correlated with enhanced enzymatic activities of XR and XDH. In addition, the expression level of ZWF1 in the oxidative pentose phosphate pathway increased significantly in SyBE005, indicating an elevated demand for NADPH from XR. Genes involved in the TCA cycle (LAT1, CIT1, CIT2, KGD1, KGD, SDH2) and gluconeogenesis (ICL1, PYC1) were also up-regulated in SyBE005. Genomic analysis revealed that point mutations in transcriptional regulators CYC8 and PHD1 might be responsible for the altered expression. In addition, a mutation (Y89S) in ZWF1 was identified which might improve NADPH production in SyBE005. Our results suggest that increasing the expression of XYL1, XYL2, XKS1, and enhancing NADPH supply are promising strategies to improve xylose fermentation in recombinant S. cerevisiae.


Xylose reductase Xylitol dehydrogenase Ethanol Yeast Evolutionary engineering 

Supplementary material

10295_2013_1350_MOESM1_ESM.docx (56 kb)
Supplementary material 1 (DOCX 55 kb)


  1. 1.
    Hahn-Hagerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74(5):937–953. doi:10.1007/s00253-006-0827-2 PubMedCrossRefGoogle Scholar
  2. 2.
    Qin L, Liu ZH, Li BZ, Dale BE, Yuan YJ (2012) Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour Technol 112:319–326. doi:10.1016/j.biortech.2012.02.134 PubMedCrossRefGoogle Scholar
  3. 3.
    Hanlon SE, Rizzo JM, Tatomer DC, Lieb JD, Buck MJ (2011) The stress response factors Yap6, Cin5, Phd1, and Skn7 direct targeting of the conserved co-repressor Tup1–Ssn6 in S. cerevisiae. PLoS One 6(4):e19060. doi:10.1371/journal.pone.0019060 PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84(1):37–53. doi:10.1007/s00253-009-2101-x PubMedCrossRefGoogle Scholar
  5. 5.
    Xia J, Jones AD, Lau MW, Yuan YJ, Dale BE, Balan V (2011) Comparative lipidomic profiling of xylose-metabolizing Saccharomyces cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity. Biotechnol Bioeng 108(1):12–21. doi:10.1002/bit.22910 PubMedCrossRefGoogle Scholar
  6. 6.
    Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25(5):425–441. doi:10.1016/j.biotechadv.2007.04.001 PubMedCrossRefGoogle Scholar
  7. 7.
    Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund MF (2008) Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol Biofuels 1(1):16. doi:1610.1186/1754-6834-1-16 PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hagerdal R, Gorwa-Grauslund MF (2006) The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 93(4):665–673. doi:10.1002/bit.20737 PubMedCrossRefGoogle Scholar
  9. 9.
    Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S (2008) Expression of protein engineered NADP plus-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81(2):243–255. doi:10.1007/s00253-008-1649-1 PubMedCrossRefGoogle Scholar
  10. 10.
    Xiong M, Chen G, Barford J (2011) Alteration of xylose reductase coenzyme preference to improve ethanol production by Saccharomyces cerevisiae from high xylose concentrations. Bioresour Technol 102(19):9206–9215. doi:10.1016/j.biortech.2011.06.058 PubMedCrossRefGoogle Scholar
  11. 11.
    Jeppsson M, Johansson B, Hahn-Hagerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68(4):1604–1609. doi:10.1128/AEM.68(4),1604-1609.2002 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Jeppsson M, Johansson B, Jensen PR, Hahn-Hagerdal B, Gorwa-Grauslund MF (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast 20(15):1263–1272. doi:10.1002/yea.1043 PubMedCrossRefGoogle Scholar
  13. 13.
    Roca C, Nielsen J, Olsson L (2003) Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyces cerevisiae improves ethanol production. Appl Environ Microbiol 69(8):4732–4736. doi:10.1128/AEM.69.8.4732-4736.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Hou J, Shen Y, Li XP, Bao XM (2007) Effect of the reversal of coenzyme specificity by expression of mutated Pichia stipitis xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Lett Appl Microbiol 45(2):184–189. doi:10.1111/j.1472-765X.2007.02165.x PubMedCrossRefGoogle Scholar
  15. 15.
    Klimacek M, Krahulec S, Sauer U, Nidetzky B (2010) Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 76(22):7566–7574. doi:10.1128/aem.01787-10 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Krahulec S, Klimacek M, Nidetzky B (2009) Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Biotechnol J 4(5):684–694. doi:10.1002/biot.200800334 PubMedCrossRefGoogle Scholar
  17. 17.
    Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B (2010) Fermentation of mixed glucose–xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact 9:16. doi:10.1186/1475-2859-9-16 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Jeppsson M, Traff K, Johansson B, Hahnhagerdal B, Gorwagrauslund M (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3(2):167–175. doi:10.1016/s1567-1356(02)00186-1 PubMedCrossRefGoogle Scholar
  19. 19.
    Kim SR, Ha SJ, Kong II, Jin YS (2012) High expression of XYL2 coding for xylitol dehydrogenase is necessary for efficient xylose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 14(4):336–343. doi:10.1016/j.ymben.2012.04.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Zha J, Hu ML, Shen MH, Li BZ, Wang JY, Yuan YJ (2012) Balance of XYL1 and XYL2 expression in different yeast chassis for improved xylose fermentation. Front Microbiol 3:355. doi:10.3389/fmicb.2012.00355 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Jin YS, Ni HY, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol 69(1):495–503. doi:10.1128/aem.69.1.495-503.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Matsushika A, Sawayama S (2008) Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng 106(3):306–309. doi:10.1263/jbb.106.306 PubMedCrossRefGoogle Scholar
  23. 23.
    Toivari MH, Aristidou A, Ruohonen L, Penttila M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3(3):236–249. doi:10.1006/mben.2000.0191 PubMedCrossRefGoogle Scholar
  24. 24.
    Du J, Yuan Y, Si T, Lian J, Zhao H (2012) Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Res 40(18):e142. doi:10.1093/nar/gks549 PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Jin YS, Alper H, Yang YT, Stephanopoulos G (2005) Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol 71(12):8249–8256. doi:10.1128/AEM.71.12.8249-8256.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22(5):359–368. doi:10.1002/yea.1216 PubMedCrossRefGoogle Scholar
  27. 27.
    Peng B, Shen Y, Li X, Chen X, Hou J, Bao X (2012) Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae. Metab Eng 14(1):9–18. doi:10.1016/j.ymben.2011.12.001 PubMedCrossRefGoogle Scholar
  28. 28.
    Hector RE, Qureshi N, Hughes SR, Cotta MA (2008) Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol 80(4):675–684. doi:10.1007/s00253-008-1583-2 PubMedCrossRefGoogle Scholar
  29. 29.
    Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A (2008) Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 43(2):115–119. doi:10.1016/j.enzmictec.2008.03.001 CrossRefGoogle Scholar
  30. 30.
    Guimaraes PM, Francois J, Parrou JL, Teixeira JA, Domingues L (2008) Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl Environ Microbiol 74(6):1748–1756. doi:10.1128/aem.00186-08 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hong KK, Vongsangnak W, Vemuri GN, Nielsen J (2011) Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc Natl Acad Sci USA 108(29):12179–12184. doi:10.1073/pnas.1103219108 PubMedCrossRefGoogle Scholar
  32. 32.
    Scalcinati G, Otero JM, Van Vleet JRH, Jeffries TW, Olsson L, Nielsen J (2012) Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res 12(5):582–597. doi:10.1111/j.1567-1364.2012.00808.x PubMedCrossRefGoogle Scholar
  33. 33.
    Wisselink HW, Cipollina C, Oud B, Crimi B, Heijnen JJ, Pronk JT, van Maris AJA (2010) Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab Eng 12(6):537–551. doi:10.1016/j.ymben.2010.08.003 PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G (2012) Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 14(6):611–622. doi:10.1016/j.ymben.2012.07.011 PubMedCrossRefGoogle Scholar
  35. 35.
    Li BZ, Yuan YJ (2010) Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 86(6):1915–1924. doi:10.1007/s00253-010-2518-2 PubMedCrossRefGoogle Scholar
  36. 36.
    Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22(4):590–594. doi:10.1016/j.copbio.2011.03.007 PubMedCrossRefGoogle Scholar
  37. 37.
    Watanabe S, Kodaki T, Makino K (2005) Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280(11):10340–10349. doi:10.1074/jbc.M409443200 PubMedCrossRefGoogle Scholar
  38. 38.
    Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11(4):355–360. doi:10.1002/yea.320110408 PubMedCrossRefGoogle Scholar
  39. 39.
    Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66(8):3381–3386PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. doi:10.1038/nprot.2008.73 PubMedCrossRefGoogle Scholar
  41. 41.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26(5):589–595. doi:10.1093/bioinformatics/btp698 PubMedCrossRefGoogle Scholar
  42. 42.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352 PubMedCrossRefGoogle Scholar
  43. 43.
    Garcia Sanchez R, Karhumaa K, Fonseca C, Sanchez Nogue V, Almeida JR, Larsson CU, Bengtsson O, Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund MF (2010) Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels 3:13. doi:10.1186/1754-6834-3-13 PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Matsushika A, Sawayama S (2010) Effect of initial cell concentration on ethanol production by flocculent Saccharomyces cerevisiae with xylose-fermenting ability. Appl Biochem Biotechnol 162(7):1952–1960. doi:10.1007/s12010-010-8972-6 PubMedCrossRefGoogle Scholar
  45. 45.
    Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77(9):2905–2915. doi:10.1128/aem.03034-10 PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Pitkänen J-P, Rintala E, Aristidou A, Ruohonen L, Penttilä M (2005) Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol 67(6):827–837. doi:10.1007/s00253-004-1798-9 PubMedCrossRefGoogle Scholar
  47. 47.
    Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund M-F (2007) High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73(5):1039–1046. doi:10.1007/s00253-006-0575-3 PubMedCrossRefGoogle Scholar
  48. 48.
    Herrero P, Galindez J, Ruiz N, Martinezcampa C, Moreno F (1995) Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast 11(2):137–144. doi:10.1002/yea.320110205 PubMedCrossRefGoogle Scholar
  49. 49.
    Jin YS, Laplaza JM, Jeffries TW (2004) Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 70(11):6816–6825. doi:10.1128/aem.70.11.6816-6825.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hagerdal B, Jonsson LJ (2003) Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 69(2):740–746. doi:10.1128/aem.69.2.740-746.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105:277–285PubMedCrossRefGoogle Scholar
  52. 52.
    Johansson B, Christensson C, Hobley T, Hahn-Hagerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67(9):4249–4255. doi:10.1128/AEM.67.9.4249-4255.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Parachin NS, Bergdahl B, van Niel EWJ, Gorwa-Grauslund MF (2011) Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 13(5):508–517. doi:10.1016/j.ymben.2011.05.005 PubMedCrossRefGoogle Scholar
  54. 54.
    Nogae I, Johnston M (1990) Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96(2):161–169PubMedCrossRefGoogle Scholar
  55. 55.
    Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409. doi:10.1016/j.femsyr.2004.09.010 PubMedCrossRefGoogle Scholar
  56. 56.
    Matsushika A, Goshima T, Fujii T, Inoue H, Sawayama S, Yano S (2012) Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 51(1):16–25. doi:10.1016/j.enzmictec.2012.03.008 PubMedCrossRefGoogle Scholar
  57. 57.
    Sonderegger M, Jeppsson M, Hahn-Hagerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70(4):2307–2317. doi:10.1128/aem.70.4.2307-2317.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Zhang GC, Liu JJ, Ding WT (2012) Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase. Appl Environ Microbiol 78(4):1081–1086. doi:10.1128/aem.06635-11 PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Hector RE, Mertens JA, Bowman MJ, Nichols NN, Cotta MA, Hughes SR (2011) Saccharomyces cerevisiae engineered for xylose metabolism requires gluconeogenesis and the oxidative branch of the pentose phosphate pathway for aerobic xylose assimilation. Yeast 28(9):645–660. doi:10.1002/yea.1893 PubMedCrossRefGoogle Scholar
  60. 60.
    Runquist D, Hahn-Hagerdal B, Bettiga M (2009) Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 8:49. doi:10.1186/1475-2859-8-49 PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Smith RL, Johnson AD (2000) Turning genes off by Ssn6–Tup1: a conserved system of transcriptional repression in eukaryotes. Trends Biochem Sci 25(7):325–330. doi:10.1016/S0968-0004(00)01592-9 PubMedCrossRefGoogle Scholar
  62. 62.
    Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2(2):202–207. doi:10.1016/s1369-5274(99)80035-6 PubMedCrossRefGoogle Scholar
  63. 63.
    Schuller HJ (2003) Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43(3):139–160. doi:10.1007/s00294-003-0381-8 PubMedGoogle Scholar
  64. 64.
    Hector RE, Dien BS, Cotta MA, Qureshi N (2011) Engineering industrial Saccharomyces cerevisiae strains for xylose fermentation and comparison for switchgrass conversion. J Ind Microbiol Biotechnol 38(9):1193–1202. doi:10.1007/s10295-010-0896-1 PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Jian Zha
    • 1
    • 2
  • Minghua Shen
    • 1
    • 2
  • Menglong Hu
    • 1
    • 2
  • Hao Song
    • 1
    • 2
    • 3
  • Yingjin Yuan
    • 1
    • 2
  1. 1.Key Laboratory of Systems BioengineeringTianjin University, Ministry of EducationTianjinPeople’s Republic of China
  2. 2.Department of Pharmaceutical Engineering, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  3. 3.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations