Journal of Industrial Microbiology & Biotechnology

, Volume 40, Issue 11, pp 1231–1240 | Cite as

Pollen baiting facilitates the isolation of marine thraustochytrids with potential in omega-3 and biodiesel production



Marine heterotrophic microbes are capable of accumulating large amounts of lipids, omega-3 fatty acids, carotenoids, and have potential for biodiesel production. Pollen baiting using Pinus radiata pollen grain along with direct plating techniques were used in this study as techniques for the isolation of oil-producing marine thraustochytrid species from Queenscliff, Victoria, Australia. Thirteen isolates were obtained using either direct plating or using pine pollen, with pine pollen acting as a specific substrate for the surface attachment of thraustochytrids. The isolates obtained from the pollen baiting technique showed a wide range of docosahexaenoic acid (DHA) accumulation, from 11 to 41 % of total fatty acid content (TFA). Direct plating isolates showed a moderate range of DHA accumulation, from 19 to 25 % of TFA. Seven isolates were identified on the basis of 18S rRNA sequencing technique as Thraustochytrium species, Schizochytrium species, and Ulkenia species. Although both methods appear to result in the isolation of similar strains, pollen baiting proved to be a simpler method for the isolation of these relatively slow-growing organisms.


Thraustochytrium sp. Schizochytrium sp. Isolation Pollen grain Direct plating PUFAs 18S rRNA Biodiesel 


  1. 1.
    Abad S, Turon X (2012) Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: focus on polyunsaturated fatty acids. Biotechnol Adv 30(3):733–741PubMedCrossRefGoogle Scholar
  2. 2.
    Ackman RG (2002) The gas chromatograph in practical analyses of common and uncommon fatty acids for the 21st century. Anal Chim Acta 465(1–2):175–192CrossRefGoogle Scholar
  3. 3.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410PubMedGoogle Scholar
  4. 4.
    Bowles RD, Hunt AE, Bremer GB, Duchars MG, Eaton RA (1999) Long-chain n−3 polyunsaturated fatty acid production by members of the marine protistan group the thraustochytrids: screening of isolates and optimisation of docosahexaenoic acid production. J Biotechnol 70(1–3):193–202CrossRefGoogle Scholar
  5. 5.
    Bremer GB (2000) Isolation and culture of thraustochytrids. In: Hyde KD, Pointing SB (eds) Marine mycology: a practical approach. Fungal Diversity press, Hong Kong, p 49–61 Google Scholar
  6. 6.
    Burja A, Radianingtyas H, Windust A, Barrow C (2006) Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl Microbiol Biotechnol 72(6):1161–1169PubMedCrossRefGoogle Scholar
  7. 7.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131PubMedCrossRefGoogle Scholar
  8. 8.
    Christie WW, Han X (eds) (2010) Lipid analysis: isolation, separation, identification and lipidomic analysis, 4th edn. The Oily Press, BridgwaterGoogle Scholar
  9. 9.
    DiLeo K, Donat K, Min-Venditti A, Dighton J (2010) A correlation between chytrid abundance and ecological integrity in New Jersey Pine barrens waters. Fungal Ecol 3(4):295–301CrossRefGoogle Scholar
  10. 10.
    Falk O, Meyer-Pittroff R (2004) The effect of fatty acid composition on biodiesel oxidative stability. Eur J Lipid Sci Technol 106(12):837–843CrossRefGoogle Scholar
  11. 11.
    Felsenstein J (1985) Confidence-limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  12. 12.
    Garrity GM, Heimbuch BK, Gagliardi M (1996) Isolation of zoosporogenous actinomycetes from desert soils. J Ind Microbiol 17(3–4):260–267Google Scholar
  13. 13.
    Goldstein S (1960) Degradation of pollen by phycomycetes. Ecology 41(3):543–545CrossRefGoogle Scholar
  14. 14.
    Gupta A, Barrow CJ, Puri M (2012) Omega-3 biotechnology: thraustochytrids as a novel source of omega-3 oils. Biotechnol Adv 30(6):1733–1745PubMedCrossRefGoogle Scholar
  15. 15.
    Gupta A, Singh D, Barrow CJ, Puri M Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production. Biochem Eng J
  16. 16.
    Gupta A, Vongsvivut J, Barrow CJ, Puri M (2012) Molecular identification of marine yeast and its spectroscopic analysis establishes unsaturated fatty acid accumulation. J Biosci Bioeng 114(4):411–417PubMedCrossRefGoogle Scholar
  17. 17.
    Hayakawa M, Tamura T, Iino H, Nonomura H (1991) Pollen-baiting and drying method for the highly selective isolation of Actinoplanes spp. from soil. J Ferment Bioeng 72(6):433–438CrossRefGoogle Scholar
  18. 18.
    Honda D, Yokochi T, Nakahara T, Raghukumar S, Nakagiri A, Schaumann K, Higashihara T (1999) Molecular phylogeny of labyrinthulids and thraustochytrids based on the sequencing of 18S ribosomal RNA gene. J Eukaryot Microbiol 46(6):637–647 PubMedCrossRefGoogle Scholar
  19. 19.
    Huang J, Aki T, Yokochi T, Nakahara T, Honda D, Kawamoto S, Shigeta S, Ono K, Suzuki O (2003) Grouping newly isolated docosahexaenoic acid-producing thraustochytrids based on their polyunsaturated fatty acid profiles and comparative analysis of 18S rRNA genes. Mar Biotechnol 5(5):450–457PubMedCrossRefGoogle Scholar
  20. 20.
    Khan I, Abourashed E (2010) Leung’s encyclopaedia of common natural ingredients: used in food, drugs and cosmetics, 3rd edn. John Wiley & Sons, Inc., Hoboken, NJ Google Scholar
  21. 21.
    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120PubMedCrossRefGoogle Scholar
  22. 22.
    Knothe G (2007) Some aspects of biodiesel oxidative stability. Fuel Process Technol 88(7):669–677CrossRefGoogle Scholar
  23. 23.
    Lee Chang K, Dunstan G, Abell GJ, Clementson L, Blackburn S, Nichols P, Koutoulis A (2012) Biodiscovery of new Australian thraustochytrids for production of biodiesel and long-chain omega-3 oils. Appl Microbiol Biotechnol 93(5):2215–2231PubMedCrossRefGoogle Scholar
  24. 24.
    Lee EJ (2000) Chytrid distribution in diverse boreal Manitoba sites. Korean J Biol Sci 4:47–62Google Scholar
  25. 25.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80(5):749–756PubMedCrossRefGoogle Scholar
  26. 26.
    Mo C, Douek J, Rinkevich B (2002) Development of a PCR strategy for thraustochytrid identification based on 18S rDNA sequence. Mar Biol 140(5):883–889CrossRefGoogle Scholar
  27. 27.
    Nakahara T, Yokochi T, Higashihara T, Tanaka S, Yaguchi T, Honda D (1996) Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap Islands. J Am Oil Chem Soc 73(11):1421–1426CrossRefGoogle Scholar
  28. 28.
    Nascimento CDA, Gomes EPC, Souza JID, Pires-Zottarelli CLA (2012) Zoosporic true fungi and heterotrophic stramenopiles assemblages from soil of Brazilian Cerrado areas. Fungal Ecol 5(2):114–123CrossRefGoogle Scholar
  29. 29.
    Perveen Z, Ando H, Ueno A, Ito Y, Yamamoto Y, Yamada Y, Takagi T, Kaneko T, Kogame K, Okuyama H (2006) Isolation and characterization of a novel thraustochytrid-like microorganism that efficiently produces docosahexaenoic acid. Biotechnol Lett 28(3):197–202PubMedCrossRefGoogle Scholar
  30. 30.
    Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur J Protistol 38(2):127–145CrossRefGoogle Scholar
  31. 31.
    Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10(6):631–640PubMedCrossRefGoogle Scholar
  32. 32.
    Rosa S, Galvagno M, Vélez C (2011) Adjusting culture conditions to isolate thraustochytrids from temperate and cold environments in southern Argentina. Mycoscience 52(4):242–252CrossRefGoogle Scholar
  33. 33.
    Shene C, Leyton A, Esparza Y, Flores L, Quilodrán B, Hinzpeter I, Rubilar M (2010) Microbial oils and fatty acids: effect of carbon source on docosahexaenoic acid (C22:6N-3, DHA) production by thraustochytrid strains. J Soil Sci Plant Nutr 10:207–216CrossRefGoogle Scholar
  34. 34.
    Song X, Zhang X, Guo N, Zhu L, Kuang C (2007) Assessment of marine thraustochytrid Schizochytrium limacinum OUC88 for mariculture by enriched feeds. Fish Sci 73(3):565–573CrossRefGoogle Scholar
  35. 35.
    Takahata K, Monobe K-I, Tada M, Weber PC (1998) The benefits and risks of n−3 polyunsaturated fatty acids. Biosci Biotechnol Biochem 62(11):2079–2085PubMedCrossRefGoogle Scholar
  36. 36.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  37. 37.
    Taoka Y, Nagano N, Okita Y, Izumida H, Sugimoto S, Hayashi M (2010) Use of an antifungal drug, amphotericin B for isolation of thraustochytrids. J Biosci Bioeng 110(6):720–723PubMedCrossRefGoogle Scholar
  38. 38.
    Ulken A, Jäckle I, Bahnweg G (1985) Morphology, nutrition and taxonomy of an Aplanochytrium sp. from the Sargasso Sea. Mar Biol 85(1):89–95CrossRefGoogle Scholar
  39. 39.
    Vishniac HS (1956) On the ecology of the lower marine fungi. Biol Bull 111(3):410–414CrossRefGoogle Scholar
  40. 40.
    Watson SW, Ordal EJ (1957) Techniques for the isolation of Labyrinthula and Thraustochytrium in pure culture. J Bacteriol 73(4):589–590PubMedGoogle Scholar
  41. 41.
    Wilkens SL, Maas EW (2012) Development of a novel technique for axenic isolation and culture of thraustochytrids from New Zealand marine environments. J Appl Microbiol 112(2):346–352PubMedCrossRefGoogle Scholar
  42. 42.
    Yaguchi T, Tanaka S, Yokochi T, Nakahara T, Higashihara T (1997) Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. J Am Oil Chem Soc 74(11):1431–1434CrossRefGoogle Scholar
  43. 43.
    Yokochi T, Honda D, Higashihara T, Nakahara T (1998) Optimization of docosahexaenoic acid production by Schizochytrium limacinum SR21. Appl Microbiol Biotechnol 49(1):72–76CrossRefGoogle Scholar
  44. 44.
    Yokoyama R, Honda D (2007) Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience 48(4):199–211CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  1. 1.Centre for Chemistry and BiotechnologyDeakin UniversityGeelongAustralia
  2. 2.Marine Biodiversity and Biosecurity, NIWAWellingtonNew Zealand
  3. 3.Centre for Chemistry and BiotechnologyDeakin UniversityGeelongAustralia

Personalised recommendations