Journal of Industrial Microbiology & Biotechnology

, Volume 40, Issue 11, pp 1263–1271 | Cite as

Scalable economic extracellular synthesis of CdS nanostructured particles by a non-pathogenic thermophile

  • Ji-Won Moon
  • Ilia N. Ivanov
  • Chad E. Duty
  • Lonnie J. Love
  • Adam J. Rondinone
  • Wei Wang
  • Yi-Liang Li
  • Andrew S. Madden
  • Jennifer J. Mosher
  • Michael Z. Hu
  • Anil K. Suresh
  • Claudia J. Rawn
  • Hyunsung Jung
  • Robert J. Lauf
  • Tommy J. Phelps
Fermentation, Cell Culture and Bioengineering


We report microbially facilitated synthesis of cadmium sulfide (CdS) nanostructured particles (NP) using anaerobic, metal-reducing Thermoanaerobacter sp. The extracellular CdS crystallites were <10 nm in size with yields of ~3 g/L of growth medium/month with demonstrated reproducibility and scalability up to 24 L. During synthesis, Thermoanaerobacter cultures reduced thiosulfate and sulfite salts to H2S, which reacted with Cd2+ cations to produce thermodynamically favored NP in a single step at 65 °C with catalytic nucleation on the cell surfaces. Photoluminescence (PL) analysis of dry CdS NP revealed an exciton-dominated PL peak at 440 nm, having a narrow full width at half maximum of 10 nm. A PL spectrum of CdS NP produced by dissimilatory sulfur reducing bacteria was dominated by features associated with radiative exciton relaxation at the surface. High reproducibility of CdS NP PL features important for scale-up conditions was confirmed from test tubes to 24 L batches at a small fraction of the manufacturing cost associated with conventional inorganic NP production processes.


CdS nanostructured particles Nano-biotechnology Thermoanaerobacter Fermentation Photoluminescence Scalable synthesis 



This research was supported by the Department of Energy’s (DOE) Advanced Manufacturing Office (AMO), Nanomanufacturing for Energy Efficiency (NT08845) and by the Laboratory Directed Research and Development Program of ORNL (L05512). Part of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at the ORNL Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. DOE. The ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC05-00OR22725. The authors also appreciate James G. Elkins for constructive comments, Tae Hwan Kim for peak analysis, and Sue Carroll for cell counting.


  1. 1.
    Bandaranayake RJ, Wen GW, Lin JY, Jiang HL, Sorensen CM (1995) Structural phase behavior in II–VI semiconductor nanoparticles. Appl Phys Lett 67:831–833CrossRefGoogle Scholar
  2. 2.
    Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016PubMedCrossRefGoogle Scholar
  3. 3.
    Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns of mixtures. II. adiabatic principle of X-ray diffraction analysis of mixtures. Appl Cryst 7:519–525CrossRefGoogle Scholar
  4. 4.
    Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanog 14:454–458CrossRefGoogle Scholar
  5. 5.
    Cumberland SL, Hanif KM, Javier A, Khitrov GA, Strouse GF, Woessner SM, Yun CS (2002) Inorganic clusters as single source precursors for preparation of CdSe, ZnSe, CdSe/ZnS nanomaterials. Chem Mater 14:1576–1584CrossRefGoogle Scholar
  6. 6.
    Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald RK, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  7. 7.
    Darugar Q, Qian W, El-Sayed MA (2006) Observation of optical gain in solutions of CdS quantum dots at room temperature in the blue region. Appl Phys Lett 88:261108CrossRefGoogle Scholar
  8. 8.
    De Azevedo WM, Menezes FD (2012) A new and straightforward synthesis route for preparing CdS quantum dots. J Lumin 132:1740–1743CrossRefGoogle Scholar
  9. 9.
    Flenniken M, Allen M, Douglas T (2004) Microbe manufacturers of semiconductors. Chem Biol 11:1478–1480PubMedCrossRefGoogle Scholar
  10. 10.
    Hummer DR, Kubicki JD, Kent PRC, Post JE, Heaney PJ (2009) The origin of nanoscale phase stability reversals in titanium oxide polymorphs. J Phys Chem C 113:4240–4245CrossRefGoogle Scholar
  11. 11.
    Jackson P, Würz R, Rau U, Mattheis J, Kurth M, Schlötzer T, Bilger G, Werner JH (2007) High quality baseline for high efficiency, Cu(In1-xGax)Se2 solar cells. Prog Photovolt: Res Appl 15:507–519CrossRefGoogle Scholar
  12. 12.
    Jun Y, Lee S-M, Kang N-J, Cheon J (2001) Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J Am Chem Soc 123:5150–5151PubMedCrossRefGoogle Scholar
  13. 13.
    Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem Int Ed 47:5186–5189CrossRefGoogle Scholar
  14. 14.
    Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747PubMedCrossRefGoogle Scholar
  15. 15.
    Li Z, Cai W, Sui J (2008) Large-scale preparation of CdS quantum dots by direct thermoysis of a single source precursor. Nanotechnol 19:035602CrossRefGoogle Scholar
  16. 16.
    Liu SV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277:1106–1109CrossRefGoogle Scholar
  17. 17.
    Mandal A, Saha J. De G (2011) Stable CdS QDs with intense broadband photoluminescence and high quantum yield. Opt Mater 34:6-11Google Scholar
  18. 18.
    Mi C, Wang Y, Zhang J, Huang H, Xu L, Wang S, Fang X, Fang J, Mao C, Xu S (2011) Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol 153:125–132PubMedCrossRefGoogle Scholar
  19. 19.
    Miller LD, Mosher JJ, Venkateswaran A, Yang ZK, Palumbo AV, Phelps TJ, Podar M, Schadt CW, Keller M (2010) Establishment and metabolic analysis of a model microbial community for understanding trophic and electron accepting interactions of subsurface anaerobic environments. BMC Microbiol 10:149PubMedCrossRefGoogle Scholar
  20. 20.
    Moon J-W, Rawn CJ, Rondinone AJ, Love LJ, Roh Y, Everett SM, Lauf RJ, Phelps TJ (2010) Large-scale production of magnetic nanoparticles using bacterial fermentation. J Ind Microbiol Biotechnol 37:1023–1031PubMedCrossRefGoogle Scholar
  21. 21.
    Moon J-W, Rawn CJ, Rondinone AJ, Wang W, Vali H, Yeary LW (2010) Crystallite sizes and lattice parameters of nano-biomagnetie particles. J Nanosci Nanotechnol 10:8298–8306PubMedCrossRefGoogle Scholar
  22. 22.
    Moon J-W, Roh Y, Lauf RJ, Vali H, Yeary LW, Phelps TJ (2007) Microbial preparation of metal-substituted magnetite nanoparticles. J Microbiol Methods 70:150–158PubMedCrossRefGoogle Scholar
  23. 23.
    Murasagi A, Nakagawa CW, Hayashi Y (1984) Formation of cadmium-binding peptide allomorphs in fission yeast. J Biochem (Tokyo) 96:1375–1379Google Scholar
  24. 24.
    Navrotsky A (2003) Energetics of nanoparticle oxides: interplay between surface energy and polymorphism. Geochem Trans 4:34–37CrossRefGoogle Scholar
  25. 25.
    Patra S, Satpati B, Pradhan SK (2011) Quickest single-step mechanosynthetisis of CdS quantum dots and their microstructure characterization. J Nanosci Nanotechnol 11:4771–4780PubMedCrossRefGoogle Scholar
  26. 26.
    Roh Y, Liu SV, Li G, Huang H, Phelps TJ, Zhou J (2002) Isolation and characterization of metal-reducing Thermoanaerobacter strains from deep subsurface environments of the Piceance Basin, Colorado. Appl Environ Microbiol 68:6013–6020PubMedCrossRefGoogle Scholar
  27. 27.
    Rondinone AJ, Pawel M, Travaglini D, Mahurin S, Dai S (2007) Metastable tetragonal phase CdWO4 nanoparticles synthesized with a solvothermal method. J Coll Int Sci 306:281–284CrossRefGoogle Scholar
  28. 28.
    Smith PR, Holmes JD, Richardson DJ, Russell DA, Sodeau JR (1998) Photophysical and photochemical characterization of bacterial semiconductor cadmium sulfide particles. J Chem Soc, Faraday Trans 94:1235–1241CrossRefGoogle Scholar
  29. 29.
    Stürzenbaum SR, Höckner M, Panneerselvam A, Levitt J, Bouillard J-S, Taniguchi S, Dailey LA, Khanbeigi RA, Rosca EV, Thanou M, Suhling K, Zayats AV, Green M (2013) Biosynthesis of luminescent quantum dots in an earthworm. Nature Nanotechnol 8:57–60CrossRefGoogle Scholar
  30. 30.
    Tamborra M, Striccoli M, Comparelli R, Curri ML, Petrella A, Agostiano A (2004) Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnol 15:S240–S244CrossRefGoogle Scholar
  31. 31.
    Tong H, Zhu Y-J (2006) Synthesis of CdS nanocrystals based on low-temperature thermolysis of one single source organic metallic precursor. Nanotechnol 17:845–851CrossRefGoogle Scholar
  32. 32.
    Uchihara T, Matsumara M, Ono J, Tsubomura H (1990) Effect of ethylenediaminetetraacetic acid on the photocatalytic activities and flat-band potentials of cadmium-sulfide and cadmium selenide. J Phys Chem 94:415–418CrossRefGoogle Scholar
  33. 33.
    Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) J Phy Che Ref Data 11Google Scholar
  34. 34.
    Weimer PJ, van Kavelaar MJ, Michel CB, Ng TK (1988) Effect of phosphate on the corrosion of carbon steel and on the composition of corrosion products in two-stage continuous cultures of Desulfovibrio desulfuricans. Appl Environ Microbiol 54:386–396PubMedGoogle Scholar
  35. 35.
    Yao S, Han Y, Liu W, Zhang W, Wang H (2007) Synthesis of CdS nanocrystals with different morphologies via an ultraviolet irradiation route. Mater Chem Phys 101:247–250CrossRefGoogle Scholar
  36. 36.
    Yu WW, Peng X (2002) Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angrew Chem Int Ed 41:2368–2371CrossRefGoogle Scholar
  37. 37.
    Zezza F, Comparelli R, Striccoli M, Curri ML, Tommasi R, Agostiano A (2003) High quality CdS nanocrystals: surface effects. Synth Met 139:597–600CrossRefGoogle Scholar
  38. 38.
    Zhang M, Drechsler M, Müller AHE (2004) Template-controlled synthesis of wire-like cadmium sulfide nanoparticle assemblies within core-shell cylindrical polymer brushes. Chem Mater 16:537–543CrossRefGoogle Scholar
  39. 39.
    Zhang C, Vali H, Romanek CS, Phelps TJ, Liu SV (1998) Formation of single-domain magnetite by a thermophilic bacterium. Am Miner 83:1409–1418Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology (Outside the USA) 2013

Authors and Affiliations

  • Ji-Won Moon
    • 1
  • Ilia N. Ivanov
    • 2
  • Chad E. Duty
    • 3
  • Lonnie J. Love
    • 4
  • Adam J. Rondinone
    • 2
  • Wei Wang
    • 5
  • Yi-Liang Li
    • 6
  • Andrew S. Madden
    • 7
  • Jennifer J. Mosher
    • 8
  • Michael Z. Hu
    • 9
  • Anil K. Suresh
    • 1
    • 10
  • Claudia J. Rawn
    • 3
  • Hyunsung Jung
    • 1
  • Robert J. Lauf
    • 1
  • Tommy J. Phelps
    • 1
  1. 1.Biosciences DivisionOak Ridge National Laboratory (ORNL)Oak RidgeUSA
  2. 2.Center for Nanophase Materials SciencesORNLOak RidgeUSA
  3. 3.Materials Science and Technology DivisionORNLOak RidgeUSA
  4. 4.Measurement Science and Systems Engineering DivisionORNLOak RidgeUSA
  5. 5.Environmental Sciences DivisionORNLOak RidgeUSA
  6. 6.Department of Earth SciencesThe University of Hong KongHong KongChina
  7. 7.School of Geology and GeophysicsUniversity of OklahomaNormanUSA
  8. 8.Stroud Water Research CenterAvondaleUSA
  9. 9.Energy and Transportation Science DivisionORNLOak RidgeUSA
  10. 10.Department of Molecular MedicineCity of HopeDuarteUSA

Personalised recommendations