Journal of Industrial Microbiology & Biotechnology

, Volume 40, Issue 9, pp 1005–1013

Diagnostics method for the rapid quantitative detection and identification of low-level contamination of high-purity water with pathogenic bacteria

  • Elizabeth Minogue
  • Kate Reddington
  • Siobhan Dorai-Raj
  • Nina Tuite
  • Eoin Clancy
  • Thomas Barry
Biotechnology Methods


High-purity water (HPW) can be contaminated with pathogenic microorganisms, which may result in human infection. Current culture-based techniques for the detection of microorganisms from HPW can be slow and laborious. The aim of this study was to develop a rapid method for the quantitative detection and identification of pathogenic bacteria causing low-level contamination of HPW. A novel internally controlled multiplex real-time PCR diagnostics assay was designed and optimized to specifically detect and identify Pseudomonas aeruginosa and the Burkholderia genus. Sterile HPW, spiked with a bacterial load ranging from 10 to 103 cfu/100 ml, was filtered and the bacterial cells were removed from the filters by sonication. Total genomic DNA was then purified from these bacteria and subjected to testing with the developed novel multiplex real-time PCR diagnostics assay. The specific P. aeruginosa and Burkholderia genus assays have an analytical sensitivity of 3.5 genome equivalents (GE) and 3.7 GE, respectively. This analysis demonstrated that it was possible to detect a spiked bacterial load of 1.06 × 102 cfu/100 ml for P. aeruginosa and 2.66 × 102 cfu/100 ml for B. cepacia from a 200-ml filtered HPW sample. The rapid diagnostics method described can reliably detect, identify, and quantify low-level contamination of HPW with P. aeruginosa and the Burkholderia genus in <4 h. We propose that this rapid diagnostics method could be applied to the pharmaceutical and clinical sectors to assure the safety and quality of HPW, medical devices, and patient-care equipment.


Burkholderia genus Pseudomonas aeruginosa Spiked high-purity water samples 

Supplementary material

10295_2013_1295_MOESM1_ESM.docx (647 kb)
Supplementary material 1 (DOCX 644 kb)


  1. 1.
    Alvarado CJ, Stolz SM, Maki DG (1991) Nosocomial infections from contaminated endoscopes: a flawed automated endoscope washer. An investigation using molecular epidemiology. Am J Med 91(3, Suppl 2):S272–S280CrossRefGoogle Scholar
  2. 2.
    Anderson RL (1989) Iodophor antiseptics: intrinsic microbial contamination with resistant bacteria. Infect Control Hosp Epidemiol 10(10):443–446PubMedCrossRefGoogle Scholar
  3. 3.
    Anon (2008) LightCycler® 480 Instrument Operator’s Manual. Roche Diagnostics, Basel, Switzerland, pp 248–256Google Scholar
  4. 4.
    Pharmacopoeia B (2012) British Pharmacopoeia Online, vol IV. Stationery Office, London, UKGoogle Scholar
  5. 5.
    Baba T, Matsumoto R, Yamaguchi N, Nasu M (2009) Bacterial population dynamics in a reverse-osmosis water purification system determined by fluorescent staining and PCR-denaturing gradient gel electrophoresis. Microbes Environ 24(2):163–167PubMedCrossRefGoogle Scholar
  6. 6.
    Barken KB, Haagensen JAJ, Tolker-Nielsen T (2007) Advances in nucleic acid-based diagnostics of bacterial infections. Clin Chim Acta 384(1–2):1–11PubMedCrossRefGoogle Scholar
  7. 7.
    Bohus V, Tóth EM, Székely AJ, Makk J, Baranyi K, Patek G, Schunk J, Márialigeti K (2010) Microbiological investigation of an industrial ultra pure supply water plant using cultivation-based and cultivation-independent methods. Water Res 44(20):6124–6132PubMedCrossRefGoogle Scholar
  8. 8.
    Boyce JM (2007) Environmental contamination makes an important contribution to hospital infection. J Hosp Infect 65(Suppl 2):50–54PubMedCrossRefGoogle Scholar
  9. 9.
    Byrd JJ, Xu HS, Colwell RR (1991) Viable but nonculturable bacteria in drinking water. Appl Environ Microbiol 57(3):875–878PubMedGoogle Scholar
  10. 10.
    Cao B, Wang H, Sun H, Zhu Y, Chen M (2004) Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J Hosp Infect 57(2):112–118PubMedCrossRefGoogle Scholar
  11. 11.
    Clancy E, Glynn B, Reddington K, Smith T, Barry T (2012) Culture confirmation of Listeria monocytogenes using tmRNA as a diagnostics target. J Microbiol Methods 88(3):427–429PubMedCrossRefGoogle Scholar
  12. 12.
    Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5(9):719–729PubMedCrossRefGoogle Scholar
  13. 13.
    Colwell R, Brayton P, Grimes D, Roszak D, Huq S, Palmer L (1985) Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Nat Biotech 3(9):817–820Google Scholar
  14. 14.
    Cross A, Allen JR, Burke J, Ducel G, Harris A, John J, Johnson D, Lew M, MacMillan B, Meers P, Skalova R, Wenzel R, Tenney J (1983) Nosocomial infections due to Pseudomonas aeruginosa: review of recent trends. Rev Infect Dis 5(Supplement 5):S837–S845PubMedCrossRefGoogle Scholar
  15. 15.
    Dorak MT (2006) Real-time PCR. January 20, 2013
  16. 16.
    Evans D, Marquez SM, Pace NR (2006) RNase P: interface of the RNA and protein worlds. Trends Biochem Sci 31(6):333–341PubMedCrossRefGoogle Scholar
  17. 17.
    Fanello S, Bouchara JP, Jousset N, Delbos V, LeFlohic AM (2001) Nosocomial Candida albicans acquisition in a geriatric unit: epidemiology and evidence for person-to-person transmission. J Hosp Infect 47(1):46–52PubMedCrossRefGoogle Scholar
  18. 18.
    Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies—a review. Nucloes Nucleot Nucl 27(3):224–243Google Scholar
  19. 19.
    Hartmann E, Hartmann RK (2003) The enigma of ribonuclease P evolution. Trends Genet 19(10):561–569PubMedCrossRefGoogle Scholar
  20. 20.
    Haynes WC (1951) Pseudomonas aeruginosa—its characterization and identification. J Gen Microbiol 5(5):939–950PubMedCrossRefGoogle Scholar
  21. 21.
    Hoorfar J, Ahrens P, Radstrom P (2000) Automated 5′ Nuclease PCR assay for identification of Salmonella enterica. J Clin Microbiol 38(9):3429–3435PubMedGoogle Scholar
  22. 22.
    Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Wagner M, Fach P (2004) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42(5):1863–1868PubMedCrossRefGoogle Scholar
  23. 23.
    Hutchinson GR, Parker S, Pryor JA, Duncan-Skingle F, Hoffman PN, Hodson ME, Kaufmann ME, Pitt TL (1996) Home-use nebulizers: a potential primary source of Burkholderia cepacia and other colistin-resistant, Gram-negative bacteria in patients with cystic fibrosis. J Clin Microbiol 34(3):584–587PubMedGoogle Scholar
  24. 24.
    Ãs Innings, Ullberg Mn, Johansson A, Rubin CJ, Noreus N, Isaksson M, Br Herrmann (2007) Multiplex real-time PCR targeting the RNase P RNA gene for detection and identification of Candida species in blood. J Clin Microbiol 45(3):874–880CrossRefGoogle Scholar
  25. 25.
    Jimenez L (2001) Molecular diagnosis of microbial contamination in cosmetic and pharmaceutical products: a review. J AOAC Int 84(3):671–675PubMedGoogle Scholar
  26. 26.
    Jimenez L (2007) Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Technol 61(5):383–399PubMedGoogle Scholar
  27. 27.
    Jimenez L, Smalls S (2000) Molecular detection of Burkholderia cepacia in toiletry, cosmetic, and pharmaceutical raw materials and finished products. J AOAC Int 83(4):963–966PubMedGoogle Scholar
  28. 28.
    Kawai M, Yamaguchi N, Nasu M (1999) Rapid enumeration of physiologically active bacteria in purified water used in the pharmaceutical manufacturing process. J Appl Microbiol 86(3):496–504PubMedCrossRefGoogle Scholar
  29. 29.
    Kiderlen A, Radam E, Lewin A (2008) Detection of Balamuthia mandrillaris DNA by real-time PCR targeting the RNase P gene. BMC Microbiol 8(1):210PubMedCrossRefGoogle Scholar
  30. 30.
    Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O’Hanlon JF (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68(4):1548–1555. doi:10.1128/aem.68.4.1548-1555.2002 PubMedCrossRefGoogle Scholar
  31. 31.
    Lee CS, Wetzel K, Buckley T, Wozniak D, Lee J (2011) Rapid and sensitive detection of Pseudomonas aeruginosa in chlorinated water and aerosols targeting gyrB gene using real-time PCR. J Appl Microbiol 111(4):893–903PubMedCrossRefGoogle Scholar
  32. 32.
    Lucero CA, Cohen AL, Trevino I, Rupp AH, Harris M, Forkan-Kelly S, Noble-Wang J, Jensen B, Shams A, Arduino MJ, LiPuma JJ, Gerber SI, Srinivasan A (2011) Outbreak of Burkholderia cepacia complex among ventilated pediatric patients linked to hospital sinks. Am J Infect Control 39(9):775–778PubMedCrossRefGoogle Scholar
  33. 33.
    Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 3(2):144–156Google Scholar
  34. 34.
    Malorny B, Tassios PT, Radström P, Cook N, Wagner M, Hoorfar J (2003) Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol 83(1):39–48PubMedCrossRefGoogle Scholar
  35. 35.
    McGuinness S, McCabe E, O’Regan E, Dolan A, Duffy G, Burgess C, Fanning S, Barry T, O’Grady J (2009) Development and validation of a rapid real-time PCR based method for the specific detection of Salmonella on fresh meat. Meat Sci 83(3):555–562PubMedCrossRefGoogle Scholar
  36. 36.
    Monis PT, Giglio S (2006) Nucleic acid amplification-based techniques for pathogen detection and identification. Infect Genet Evol 6(1):2–12PubMedCrossRefGoogle Scholar
  37. 37.
    Moore SD, Sauer RT (2007) The tmRNA system for translational surveillance and ribosome rescue. Annu Rev Biochem 76(1):101–124PubMedCrossRefGoogle Scholar
  38. 38.
    Moreira BM, Leobons MBGP, Pellegrino FLPC, Santos M, Teixeira LM, de Andrade Marques E, Sampaio JLM, Pessoa-Silva CL (2005) Ralstonia pickettii and Burkholderia cepacia complex bloodstream infections related to infusion of contaminated water for injection. J Hosp Infect 60(1):51–55PubMedCrossRefGoogle Scholar
  39. 39.
    Nogva HK, Rudi K, Naterstad K, Holck A, Lillehaug D (2000) Application of 5′-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. Appl Environ Microbiol 66(10):4266–4271PubMedCrossRefGoogle Scholar
  40. 40.
    O’ Grady J, Sedano-Balbás S, Maher M, Smith T, Barry T (2008) Rapid real-time PCR detection of Listeria monocytogenes in enriched food samples based on the ssrA gene, a novel diagnostic target. Food Microbiol 25(1):75–84PubMedCrossRefGoogle Scholar
  41. 41.
    O’Connor L, Lahiff S, Casey F, Glennon M, Cormican M, Maher M (2005) Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler™. Mol Cell Probes 19(3):153–162PubMedCrossRefGoogle Scholar
  42. 42.
    Oie S, Kamiya A (1996) Microbial contamination of antiseptics and disinfectants. Am J Infect Control 24(5):389–395PubMedCrossRefGoogle Scholar
  43. 43.
    Penna V, Martins S, Mazzola P (2002) Identification of bacteria in drinking and purified water during the monitoring of a typical water purification system. BMC Public Health 2(1):13PubMedCrossRefGoogle Scholar
  44. 44.
    Ringen LM, Drake CH (1952) A study of the incidence of Pseudomonas aeruginosa from various natural sources. J Bacteriol 64(6):841–845PubMedGoogle Scholar
  45. 45.
    Robertson JM, Walsh-Weller J (1998) An introduction to PCR primer design and optimization of amplification reactions. Methods Mol Biol 98:121–154PubMedGoogle Scholar
  46. 46.
    Rodley PD, Römling U, Tümmler B (1995) A physical genome map of the Burkholderia cepacia-type strain. Mol Microbiol 17(1):57–67PubMedCrossRefGoogle Scholar
  47. 47.
    Schelenz S, French G (2000) An outbreak of multidrug-resistant Pseudomonas aeruginosa infection associated with contamination of bronchoscopes and an endoscope washer-disinfector. J Hosp Infect 46(1):23–30PubMedCrossRefGoogle Scholar
  48. 48.
    Schönhuber W, Bourhis G, Tremblay J, Amann R, Kulakauskas S (2001) Utilization of tmRNA sequences for bacterial identification. BMC Microbiol 1(1):20Google Scholar
  49. 49.
    Smith DL, Gumery LB, Smith EG, Stableforth DE, Kaufmann ME, Pitt TL (1993) Epidemic of Pseudomonas cepacia in an adult cystic fibrosis unit: evidence of person-to-person transmission. J Clin Microbiol 31(11):3017–3022PubMedGoogle Scholar
  50. 50.
    Spach DH, Silverstein FE, Stamm WE (1993) Transmission of infection by gastrointestinal endoscopy and bronchoscopy. Ann Intern Med 118(2):117PubMedCrossRefGoogle Scholar
  51. 51.
    Toplak N, Kovač M, Piskernik S, Možina SS, Jeršek B (2012) Detection and quantification of Campylobacter jejuni and Campylobacter coli using real-time multiplex PCR. J Appl Microbiol 112(4):752–764PubMedCrossRefGoogle Scholar
  52. 52.
    Weile J, Knabbe C (2009) Current applications and future trends of molecular diagnostics in clinical bacteriology. Anal Bioanal Chem 394(3):731–742PubMedCrossRefGoogle Scholar
  53. 53.
    Weinstein RA, Hota B (2004) Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis 39(8):1182–1189CrossRefGoogle Scholar
  54. 54.
    Wernecke M, Mullen C, Sharma V, Morrison J, Barry T, Maher M, Smith T (2009) Evaluation of a novel real-time PCR test based on the ssrA gene for the identification of group B streptococci in vaginal swabs. BMC Infect Dis 9(1):148PubMedCrossRefGoogle Scholar
  55. 55.
    Xu H-S, Roberts N, Singleton FL, Attwell RW, Grimes DJ, Colwell RR (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8(4):313–323CrossRefGoogle Scholar
  56. 56.
    Yun JJ, Heisler LE, Hwang IIL, Wilkins O, Lau SK, Hyrcza M, Jayabalasingham B, Jin J, McLaurin J, Tsao M-S, Der SD (2006) Genomic DNA functions as a universal external standard in quantitative real-time PCR. Nucleic Acids Res 34(12):e85PubMedCrossRefGoogle Scholar
  57. 57.
    Zaluski S, Clayman HM, Gr Karsenti, Bourzeix S, Tournemire A, Faliu B, Gulian C, Grimont F (1999) Pseudomonas aeruginosa endophthalmitis caused by contamination of the internal fluid pathways of a phacoemulsifier. J Cataract Refract Surg 25(4):540–545PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Elizabeth Minogue
    • 1
  • Kate Reddington
    • 1
  • Siobhan Dorai-Raj
    • 1
  • Nina Tuite
    • 1
  • Eoin Clancy
    • 1
    • 2
  • Thomas Barry
    • 1
  1. 1.Microbiology, School of Natural SciencesNational University of IrelandGalwayIreland
  2. 2.National Centre for Biomedical Engineering Science, Biomedical Diagnostics Institute ProgrammeNational University of IrelandGalwayIreland

Personalised recommendations