Highly valuable microalgae: biochemical and topological aspects

  • Olivier Pignolet
  • Sébastien Jubeau
  • Carlos Vaca-Garcia
  • Philippe MichaudEmail author


The past decade has seen a surge in the interest in microalgae culture for biodiesel production and other applications as renewable biofuels as an alternative to petroleum transport fuels. The development of new technologies for the culture of these photosynthetic microorganisms and improved knowledge of their biochemical composition has spurred innovation in the field of high-value biomolecules. These developments are only economically viable if all the microalgae fractions are valorized in a biorefinery strategy. Achieving this objective requires an understanding of microalgae content and the cellular localization of the main biomolecular families in order to develop efficient harvest and sequential recovery technologies. This review summarizes the state of the art in microalgae compositions and topologies using some examples of the main industrially farmed microalgae.


Biorefinery Cyanobacteria Eukaryotic microalgae Biofuel Lipid Polysaccharide Pigment Protein 


  1. 1.
    Abd El-Baky HH, El Baz FK, El-Baroty GS (2003) Spirulina species as a source of carotenoids and α-tocopherol and its anticarcinoma factors. Biotechnology 2:222–240CrossRefGoogle Scholar
  2. 2.
    Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410CrossRefGoogle Scholar
  3. 3.
    Arad SM, Levy-Ontman O (2010) Red microalgal cell-wall polysaccharides: biotechnological aspects. Curr Opin Biotechnol 21:358–364PubMedCrossRefGoogle Scholar
  4. 4.
    Ashokkumar V, Rengasamy R (2012) Mass culture of Botryococcus braunii Kutz. under open raceway pond for biofuel production. Bioresour Technol 104:394–399PubMedCrossRefGoogle Scholar
  5. 5.
    Avila-Leon I, Chuei Matsudo M, Sato S, de Carvalho JCM (2012) Arthrospira platensis biomass with high protein content cultivated in continuous process using urea as nitrogen source. J Appl Microbiol 112:1086–1094PubMedCrossRefGoogle Scholar
  6. 6.
    Banerjee A, Sharma R, Chisti Y, Benerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279PubMedCrossRefGoogle Scholar
  7. 7.
    Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. Ann Rev Biochem 22:110–180Google Scholar
  8. 8.
    Basaca-Loya GA, Valdez MA, Enriquez-Guevara EA, Gutierrez-Millan LE, Burboa MG (2009) Extraction and purification of B-phycoerythrin from the red microalga Rhodosorus marinus. Cienc Mar 35:359–368Google Scholar
  9. 9.
    Beale SI (1993) Biosynthesis of phycobilins. Chem Rev 93:785–802CrossRefGoogle Scholar
  10. 10.
    Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210PubMedCrossRefGoogle Scholar
  11. 11.
    Ben-Amotz A, Avron M (1990) The biotechnology of cultivating the halotolerant alga Dunaliella. Trends Biotechnol 8:121–126CrossRefGoogle Scholar
  12. 12.
    Ben-Amotz A, Katz A, Avron M (1982) Accumulation of β-carotene in halotolerant algae: purification and characterization of β-carotene-rich globules from D. bardawil (Chlorophyceae). J Phycol 18:529–537CrossRefGoogle Scholar
  13. 13.
    Berge JP, Gouygou JP, Dubacq JP, Durand P (1995) Reassessment of lipid-composition of the diatom, skeletonema costatum. Phytochemistry 39:1017–1021CrossRefGoogle Scholar
  14. 14.
    Bergman B (1981) Glyoxylate decreases the oxygen sensitivity of nitrogenase activity and photosynthesis in the cyanobacterium Anabaena cylindrical. Planta 152:302–306CrossRefGoogle Scholar
  15. 15.
    Bergman B (1986) Glyoxylate induced changes in the carbon and nitrogen metabolism of the cyanobacterium Anabaena cylindrical. Plant Physiol 80:698–701PubMedCrossRefGoogle Scholar
  16. 16.
    Bermejo R, Alvarez-Pez JM, Acien Fernandez FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85CrossRefGoogle Scholar
  17. 17.
    Bermejo R, Talavera EM, Alvarez-Pez JM (2001) Chromatographic purification and characterization of b-phycoerythrin from Porphyridium cruentum: semipreparative HPLC separation and characterization of its subunits. J Chromatogr A 917:35–45Google Scholar
  18. 18.
    Bertheas O, Metzger P, Largeau C (1998) A high molecular weight complex lipid, aliphatic polyaldehyde tetraterpenediol polyacetal from Botryococcus braunii (L race). Phytochemistry 50:85–96CrossRefGoogle Scholar
  19. 19.
    Bondioli P, Bella LD, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour Technol 114:567–572PubMedCrossRefGoogle Scholar
  20. 20.
    Borowitzka MA, Huisman JM, Osborn A (1991) Culture of the astaxanthin-producing green alga Haematococcus pluvialis 1. Effects of nutrients on growth and cell type. J Appl Phycol 3:295–304Google Scholar
  21. 21.
    Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73CrossRefGoogle Scholar
  22. 22.
    Bujard E, Baco U, Mauron J, Mottu F, Nabholtz A, Wuhrmann JJ, Clément G (1970) Composition and nutritive value of blue green algae (Spirulina) and their possible use in food formulations. In: 3rd International Congress of Food Science and Technology, Washington, DCGoogle Scholar
  23. 23.
    Çelekli A, Balci M (2009) The influence of different phosphate and nitrate concentrations on growth, protein and chlorophyll a content of Scenedesmus obliquus. Fresenius Environ Bull 18:1363–1366Google Scholar
  24. 24.
    Cha KH, Koo SY, Lee DU (2008) Antiproliferative effects of carotenoids extracted from Chlorella ellipsoidea and Chlorella vulgaris on human colon cancer cells. J Agric Food Chem 56:10521–10526PubMedCrossRefGoogle Scholar
  25. 25.
    Challouf R, Trabelsi L, Ben Dhieb R, El Abed O, Yahia A, Ghozzi K, Ben Ammer G, Omran H, Ben Ouada H (2011) Evaluation of cytotoxicity and biological activity in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838CrossRefGoogle Scholar
  26. 26.
    Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81PubMedCrossRefGoogle Scholar
  27. 27.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  28. 28.
    Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol 100:833–838PubMedCrossRefGoogle Scholar
  29. 29.
    Choi KJ, Nakhost Z, Barzana E, Karel M (1987) Lipid content and fatty acid composition of green algae Scenedesmus obliquus grown in a constant cell density apparatus. Food Biotechnol 1:117–128PubMedCrossRefGoogle Scholar
  30. 30.
    Choi WY, Oh SH, Seo YC, Kim GB, Kang DH, Lee SY, Jung KH, Cho JS, Ahn JH, Choi GP, Lee HY (2011) Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol Bioprocess Eng 16:946–955CrossRefGoogle Scholar
  31. 31.
    Cohen Z (1990) The production potential of eicosapentaenoic and arachidonic acids by the red alga Porphyridium cruentum. J Am Oil Chem Soc 67:916–920CrossRefGoogle Scholar
  32. 32.
    Cohen Z, Khozin-Goldberg I, Adlerstein D, Bigogno C (2002) The role of triacylglycerol as a reservoir of polyunsaturated fatty acids for the rapid production of chloroplastic lipids in certain microalgae. Biochem Soc Trans 28:740–743CrossRefGoogle Scholar
  33. 33.
    Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151CrossRefGoogle Scholar
  34. 34.
    Dai J, Wu Y, Chen SW, Zhu S, Yin HP, Wang M, Tang J (2010) Sugar composition determination of polysaccharides from Dunalielle salina by modified RP-HPLC method of precolumn derivatization with 1-phenyl-3-methyl-5-pyrazolone. Carbohyd Polym 82:639–635Google Scholar
  35. 35.
    Dayananda C, Sarada R, Kumar V, Ravishankar GA (2007) Isolation and characterization of hydrocarbon producing green alga Botryococcus braunii from Indian freshwater bodies. Electron J Biotechnol 10:1–14CrossRefGoogle Scholar
  36. 36.
    Dayananda C, Sarada R, Usha Rani M, Shamala TR, Ravishankar GA (2007) Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media. Biomass Bioenergy 31:87–93CrossRefGoogle Scholar
  37. 37.
    Dillon JC, Phan PA (1993) Spirulina as a source of proteins in human nutrition. In: Doumengue F, Durand-Chastel H, Toulemont A (eds) Spiruline algue de vie Musée Océanographique, vol 12. Bulletin de l′Institut Océanographique Monaco, pp 103–107Google Scholar
  38. 38.
    Durmaz Y, Monteiro M, Bandarra N, Gökpinaret Ş, Işik O (2007) The effect of low temperature on fatty acid composition and tocopherols of the red microalga Porphyridium cruentum. J Appl Phycol 19:223–227CrossRefGoogle Scholar
  39. 39.
    Fabregas J, Garcia D, Fernandez AM, Rocha AI, Gomez P, Escribano JM, Otero A, Coll JM (1999) In vitro inhibition of the replication of haemorrhagic septicaemia virus (VHSV) and African swine fever virus (ASFV) by extracts from marine microalgae. Antiviral Res 44:67–73PubMedCrossRefGoogle Scholar
  40. 40.
    Fabregas J, Patifio M, Vecino E, Chfizaro F, Otero A (1995) Productivity and biochemical composition of cyclostat cultures of the marine microalga Tetraselmis suecica. Appl Microbiol Biotechnol 43:617–621CrossRefGoogle Scholar
  41. 41.
    Feng Y, Li C, Zhang D (2011) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol 102:101–105PubMedCrossRefGoogle Scholar
  42. 42.
    Frenz J, Largeau C, Casadevall E, Kollerup F, Daugulis AJ (1989) Hydrocarbon recovery and biocompatibility of solvents for extraction from cultures of Botryococcus braunii. Biotechnol Bioeng 34:755–762PubMedCrossRefGoogle Scholar
  43. 43.
    Guaratini T, Cardozo KHM, Pinto E, Colepicolo P (2009) Comparison of diode array and electrochemical detection in the C30 reverse phase HPLC analysis of algae carotenoids. J Braz Chem Soc 20:1609–1616CrossRefGoogle Scholar
  44. 44.
    Garcia-Gonzales M, Moreno J, Manzano JC, Florencio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in closed tubular photobioreactor. J Biotechnol 115:81–90CrossRefGoogle Scholar
  45. 45.
    Gastineau R, Pouvreau JB, Hellio C, Morançais M, Fleurence J, Gaudin P, Bourgougnon N, Mouget JL (2012) Biological activities of purified marennine, the blue pigment responsible for the greening of oysters. J Agric Food Chem 60:3599–3605PubMedCrossRefGoogle Scholar
  46. 46.
    Gloaguen V, Ruiz G, Morvan H, Mouradi-Givernaud A, Maes E, Krausz P, Strecker G (2004) The extracellular polysaccharide of Porphyridium sp.: an NMR study of lithium-resistant oligosaccharidic fragments. Carbohydr Res 339:97–103PubMedCrossRefGoogle Scholar
  47. 47.
    Gomez-Villa H, Voltolina D, Nieves M, Pina P (2005) Biomass production and nutrient budget in outdoor cultures of Scenedesmus obliquus (Chlorophyceae) in artificial wastewater, under the winter and summer conditions of Mazatlán, Sinaloa, Mexico. Vie et Milieu 55:121–126Google Scholar
  48. 48.
    González López CV, Cerón García MDC, Acién Fernández FG, Segovia Bustos C, Chisti Y, Fernández Sevilla JM (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591CrossRefGoogle Scholar
  49. 49.
    Gouveia L, Nobre BP, Marcelo FM, Mrejen S, Cardoso MT, Palavra AF (2007) Functional food oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem 101:717–723CrossRefGoogle Scholar
  50. 50.
    Gouveia L, Veloso V, Reis A, Fernandes H, Novais J, Empis J (1996) Evolution of pigment composition in Chlorella vulgaris. Bioresour Technol 57:157–163CrossRefGoogle Scholar
  51. 51.
    Grung M, D’Souza F, Borowitzka M, Liaaen-Jensen S (1992) Algal carotenoids: 1. Secondary carotenoids 2. Haematococcus pluvialis aplanospores as a source of (3S,3′S)-astaxanthin esters. J Appl Phycol 4:165–171CrossRefGoogle Scholar
  52. 52.
    Hagen C, Braune W, Bjorn LO (1994) Functional aspects of secondary carotenoids in Haematococcus lacustris (Volvocales). III. Action as a sunshade. J Phycol 30:241–248CrossRefGoogle Scholar
  53. 53.
    Hagen C, Braune W, Greulich F (1993) Functional aspects of secondary carotenoids in Haematococcus lacustris [Girod] Rostafinski (Volvocales). IV. Protection from photodynamic damage. J Photochem Photobiol B Biol 20:153–160CrossRefGoogle Scholar
  54. 54.
    Hagen C, Grünewald K (2000) Fosmidomycin as an inhibitor of the non-mevalonate terpenoid pathway depresses synthesis of secondary carotenoids in flagellates of the green alga Haematococcus pluvialis. J Appl Bot 74:137–140Google Scholar
  55. 55.
    Hayashi K, Hayashi T, Kojima I (1996) A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-Herpes Simplex virus and anti-human immunodeficiency virus activities. AIDS Res Hum Retroviruses 12:1463–1471PubMedCrossRefGoogle Scholar
  56. 56.
    Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252PubMedCrossRefGoogle Scholar
  57. 57.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  58. 58.
    Hu Z, Li Y, Sommerfeld M, Chen F, Hu Q (2008) Enhanced protection against oxidative stress in an astaxanthin-overproduction Haematococcus mutant (Chlorophyceae). Eur J Phycol 43:365–376CrossRefGoogle Scholar
  59. 59.
    Janczyk P, Franke H, Souffrant WB (2007) Nutritional value of Chlorella vulgaris: effects of ultrasonication and electroporation on digestibility in rats. Anim Feed Sci Technol 132:163–169CrossRefGoogle Scholar
  60. 60.
    Jaouen P, Lépine B, Rossignol N, Royer R, Quemeneur F (1999) Clarification and concentration with membrane technology of a phycocyanin solution extracted from Spirulina platensis. Biotechnol Tech 13:877–881CrossRefGoogle Scholar
  61. 61.
    Kawachi M, Tanoi T, Demura M, Kaya K, Watanabe MM (2012) Relationship between hydrocarbons and molecular phylogeny of Botryococcus braunii. Algal Res 1:114–119CrossRefGoogle Scholar
  62. 62.
    Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100PubMedCrossRefGoogle Scholar
  63. 63.
    Knothe G (2006) Analyzing biodiesel: standards and other methods. J Am Oil Chem Soc 83:823–833CrossRefGoogle Scholar
  64. 64.
    Kobyashi M, Kakizono T, Nagai S (1991) Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media. J Ferm Bioeng 71:335–339CrossRefGoogle Scholar
  65. 65.
    Lankester R (1986) On green oysters. Q J Microsc Sci 26:71–94Google Scholar
  66. 66.
    Laroche C, Michaud P (2007) New developments and prospective applications for β (1,3) glucans. Rec Pat Biotechnol 1:59–73CrossRefGoogle Scholar
  67. 67.
    Laws EA, Pei S, Bienfang P, Grant S (2011) Phosphate-limited growth and uptake kinetics of the marine prasinophyte Tetraselmis suecica (Kylin) Butcher. Aquaculture 322–323:117–121CrossRefGoogle Scholar
  68. 68.
    Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:S75–S77PubMedCrossRefGoogle Scholar
  69. 69.
    Lehninger AL, Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, 4th edn. W.H. Freeman, New YorkGoogle Scholar
  70. 70.
    Lee RE (2008) Phycology, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  71. 71.
    Levy-Ontman O, Arad SM, Harvey DJ, Parsons TB, Fairbanks A, Tekoah Y (2011) Unique N-glycan moieties of the 66-kDa cell wall glycoprotein from the red microalga Porphyridium sp. J Biol Chem 286:24340–21352Google Scholar
  72. 72.
    Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817PubMedCrossRefGoogle Scholar
  73. 73.
    Liu Y, Wang W, Zhang M, Xing P, Yang Z (2010) PSII-efficiency, polysaccharide production, and phenotypic plasticity of Scenedesmus obliquus in response to changes in metabolic carbon flux. Biochem Syst Ecol 38:292–299CrossRefGoogle Scholar
  74. 74.
    Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefGoogle Scholar
  75. 75.
    Mahboob S, Rauf A, Ashraf M, Sultana T, Sultana S, Jabeen F, Rajoka MI, Alkaham Al-Balawi HF, Al-Ghanim KA (2012) High-density growth and crude protein productivity of a thermotolerant Chlorella vulgaris: production kinetics and thermodynamics. Aquacult Int 20:455–466CrossRefGoogle Scholar
  76. 76.
    Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291PubMedCrossRefGoogle Scholar
  77. 77.
    Mandal S, Mallick N (2011) Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Appl Environ Microbiol 77:374–377PubMedCrossRefGoogle Scholar
  78. 78.
    Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  79. 79.
    Mendes RL, Fernandes HL, Coelbo JP, Reis EC, Cabral JMS, Novais JM, Palavra AF (1995) Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chem 53:99–103CrossRefGoogle Scholar
  80. 80.
    Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF (2003) Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg Chim Acta 356:328–334CrossRefGoogle Scholar
  81. 81.
    Mendes-Pinto MM, Raposo MFJ, Bowen J, Young AJ, Morais R (2001) Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects on astaxanthin recovery and implications for bio-availability. J Appl Phycol 13:19–24CrossRefGoogle Scholar
  82. 82.
    Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii (Chlorophyceae) that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266CrossRefGoogle Scholar
  83. 83.
    Mishra A, Kavita K, Jha B (2011) Characterization of extracellular polymeric substances produced by micro-algae Dunaliella salina. Carbohydr Polym 83:852–857CrossRefGoogle Scholar
  84. 84.
    Neuville D, Daste PH (1978) Recherche sur le déterminisme de la production de marennine par la diatomée marine Navicula ostrearia (Gaillon) Bory en culture in vitro. Revue Générale de Botanique 85:255–303Google Scholar
  85. 85.
    Nomoto K, Yokokura T, Satoh H, Mutai M (1983) Anti-tumor effect by oral administration of Chlorella extract, PCM-4 by oral admission. Gan To Kagaku Zasshi 10:781–785Google Scholar
  86. 86.
    Ogawa K, Ikeda Y, Kondo S (1999) A new trisaccharide, alpha-d-glucopyranuronosyl-(1 → 3)-alpha-l-rhamnopyranosyl-(1 → 2)-alpha-l-rhamnopyranose from Chlorella vulgaris. Carbohydr Res 321:128–131CrossRefGoogle Scholar
  87. 87.
    Oliver DJ, Zelitch I (1977) Metabolic regulation of glycolate synthesis, photorespiration, and net photosynthesis in tobacco by l-glutamate. Plant Physiol 59:688–694PubMedCrossRefGoogle Scholar
  88. 88.
    Olofsson M, Lamela T, Nilsson E, Bergé JP, del Pino V, Uronen P, Legrand C (2012) Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies 5:1577–1592CrossRefGoogle Scholar
  89. 89.
    Patel AK, Laroche C, Marcati A, Ursu AV, Jubeau S, Marchal L, Petit E, Djelveh G, Michaud P (2013) Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresource Technol (in press)Google Scholar
  90. 90.
    Patel A, Mishr S, Pawar R, Ghosh PK (2005) Purification and characterization of C-phycocyanin from cyanobacterial species of marine and freshwater habitat. Protein Expres Purif 40:248–255CrossRefGoogle Scholar
  91. 91.
    Philippis R, Sili C, Vincenzini M (1996) Response of an exopolysaccharide-producing heterocystous cyanobacterium to changes in metabolic carbon flux. J Appl Phycol 8:275–281CrossRefGoogle Scholar
  92. 92.
    Pouvreau JB, Morançais M, Massé G, Rosa P, Robert JM, Fleurence J, Pondaven P (2006) Purification of the blue-green pigment “marennine” from the marine tychopelagic diatom Haslea ostrearia (Gaillon/Bory) Simonsen. J Appl Phycol 18:769–781CrossRefGoogle Scholar
  93. 93.
    Pouvreau JB, Morançais M, Taran F, Rosa P, Dufossé L, Guérard F, Pin S, Fleurence J, Pondaven P (2008) Antioxidant and free radical scavenging properties of marennine, a blue-green polyphenolic pigment from the diatom Haslea ostrearia (Gaillon/Bory) Simonsen responsible for the natural greening of cultured oysters. J Agric Food Chem 56:6278–6286PubMedCrossRefGoogle Scholar
  94. 94.
    Ramus J (1981) The capture and transduction of light energy. In: Lobban CS, Wynne MJ (eds) The biology of seaweeds. Blackwell Scientific Publications, Boston, pp 458–492Google Scholar
  95. 95.
    Ranga Rao A, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564PubMedCrossRefGoogle Scholar
  96. 96.
    Ranson G (1927) L’absorption de matières organiques dissoutes par la surface extérieure du corps chez les animaux aquatiques. Annales de l’Institut Océanographique 4:49–174Google Scholar
  97. 97.
    Raposo MPJ, Morais RMSC, Morais AMMB (2013) Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252PubMedCrossRefGoogle Scholar
  98. 98.
    Rebolloso Fuentes MM, Acien Fernandez GG, Sanchez Perez JA, Guil Guerrero JL (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353CrossRefGoogle Scholar
  99. 99.
    Rossignol N, Jaouen P, Robert JM, Quéméneur F (2000) Production of exocellular pigment by the marine diatom Haslea ostrearia Simonsen in a photobioreactor equipped with immersed ultrafiltration membranes. Bioresour Technol 73:197–200CrossRefGoogle Scholar
  100. 100.
    Ruen-Ngam D, Shotipruk A, Pavasant P, Machmudah S, Goto M (2012) Selective extraction of lutein from alcohol treated Chlorella vulgaris by supercritical CO2. Chem Eng Technol 35:255–260CrossRefGoogle Scholar
  101. 101.
    Ruiz-Martin A, Mendoza-Espinosa G, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64CrossRefGoogle Scholar
  102. 102.
    Sakamoto K, Baba M, Suzuki I, Watanabe MM, Shiraiwa Y (2012) Optimization of light for growth, photosynthesis, and hydrocarbon production by the colonial microalga Botryococcus braunii BOT-22. Bioresour Technol 110:474–479PubMedCrossRefGoogle Scholar
  103. 103.
    Sarada R, Pillai MG, Ravishankar GA (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on Phycocyanin. Process Biochem 34:795–801CrossRefGoogle Scholar
  104. 104.
    Schwenzfeier A, Wierenga PA, Gruppen H (2011) Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour Technol 102:9121–9127PubMedCrossRefGoogle Scholar
  105. 105.
    Seyfabadi J, Ramezanpouret Z, Khoeyi ZA (2011) Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23:721–726CrossRefGoogle Scholar
  106. 106.
    Singh S, Arad SM, Richmond A (2000) Extracellular polysaccharide production in outdoor mass cultures of Porphyridium sp. in flat plate glass reactors. J Appl Phycol 12:269–275CrossRefGoogle Scholar
  107. 107.
    Sommer TR, Pott WT, Morrisey NM (1991) Utilization of microalgae astaxanthin by rainbow trout (Oncorhynchus mykiss). Aquaculture 94:79–88CrossRefGoogle Scholar
  108. 108.
    Stephenson PG, Moore CM, Terry MJ, Zubkov MV, Bibby TS (2011) Improving photosynthesis for algal biofuels: toward a green revolution. Trends Biotechnol 29:615–623PubMedCrossRefGoogle Scholar
  109. 109.
    Su CH, Chien LJ, Gomes J, Lin YS, Yu YK, Liou JS, Syu RJ (2011) Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. J Appl Phycol 23:903–908CrossRefGoogle Scholar
  110. 110.
    Sukenik A, Carmeli Y, Berner T (1989) Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol 25:686–692CrossRefGoogle Scholar
  111. 111.
    Sun L, Wang C, Shi QJ, Ma CH (2009) Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int J Biol Macromol 45:42–47PubMedCrossRefGoogle Scholar
  112. 112.
    Sun L, Wang L, Zhou Y (2012) Immunomodulation and antitumor activities of different-molecular-weight polysaccharides from Porphyridium cruentum. Carbohydr Polym 87:1206–1210CrossRefGoogle Scholar
  113. 113.
    Thornton DCO (2002) Diatom aggregation in the sea: mechanisms and ecological implications. Eur J Phycol 37:149–161CrossRefGoogle Scholar
  114. 114.
    Tonon T, Harvey D, Larson TR, Graham IA (2002) Long-chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 61:15–24PubMedCrossRefGoogle Scholar
  115. 115.
    Trabelsi L, Ben Houada H, Zili F, Mazhoud N, Ammar J (2013) Evaluation of Arthrospira platensis extracellular polymeric substance production in photoautotrophic, heterotrophic and mixotrophic conditions. Folia Microbiol 58:39–45CrossRefGoogle Scholar
  116. 116.
    Trabelsi L, M’sakni NH, Ben Houada H, Bacha H, Roudesli S (2009) Partial characterization of extracellular polysaccharide produced by Arthrospira platensis. Biotechnol Bioprocess Eng 14:27–31CrossRefGoogle Scholar
  117. 117.
    Uslu L, Isik O, Koç K, Göksan T (2011) The effects of nitrogen deficiencies on the lipid and protein contents of Spirulina platensis. Afr J Biotechnol 10:386–389Google Scholar
  118. 118.
    Velea S, Ilie L, Filipescu L (2011) Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate. U.P.B. Sci Bull Ser B 73:86–94Google Scholar
  119. 119.
    Vigeolas H, Duby F, Kaymak E, Niessen G, Motte P, Franck F, Remacle C (2012) Isolation and partial characterization of mutants with elevated lipid content in Chlorella sorokiniana and Scenedesmus obliquus. J Biotechnol 162:3–12PubMedCrossRefGoogle Scholar
  120. 120.
    Vílchez C, Garbayo I, Lobato MV, Vega JM (2007) Microalgae-mediated chemicals production and wastes removal. Enzyme Microb Technol 20:562–572CrossRefGoogle Scholar
  121. 121.
    Wang B, Zarka A, Trebst A, Boussiba S (2003) Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance. J Phycol 39:1116–1124CrossRefGoogle Scholar
  122. 122.
    Wilson MA, Batts BD, Hatcher PG (1988) Molecular composition and mobility of torbanite precursors: implications for the structure of coal. Energy Fuels 2:668–672CrossRefGoogle Scholar
  123. 123.
    Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26:352–360PubMedCrossRefGoogle Scholar
  124. 124.
    Yeh KL, Chang JS (2012) Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Biochem Eng J 64:1–7CrossRefGoogle Scholar
  125. 125.
    Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Olivier Pignolet
    • 1
  • Sébastien Jubeau
    • 2
  • Carlos Vaca-Garcia
    • 1
  • Philippe Michaud
    • 3
    Email author
  1. 1.INP-ENSIACET, LCA (Laboratoire de Chimie Agro-Industrielle), INRA, UMR 1010 CAIUniversité de ToulouseToulouseFrance
  2. 2.Laboratoire GEPEA, CRTT, UMR CNRS 6144Université de NantesSaint-NazaireFrance
  3. 3.Institut Pascal UMR CNRS 6602, Polytech’ Clermont FerrandClermont Université, Université Blaise PascalAubièreFrance

Personalised recommendations