Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways

  • Douwe van der Veen
  • Jonathan Lo
  • Steven D. Brown
  • Courtney M. Johnson
  • Timothy J. Tschaplinski
  • Madhavi Martin
  • Nancy L. Engle
  • Robert A. van den Berg
  • Aaron D. Argyros
  • Nicky C. Caiazza
  • Adam M. Guss
  • Lee R. LyndEmail author
Genetics and Molecular Biology of Industrial Organisms


Clostridium thermocellum is a thermophilic, cellulolytic anaerobe that is a candidate microorganism for industrial biofuels production. Strains with mutations in genes associated with production of l-lactate (Δldh) and/or acetate (Δpta) were characterized to gain insight into the intracellular processes that convert cellobiose to ethanol and other fermentation end-products. Cellobiose-grown cultures of the Δldh strain had identical biomass accumulation, fermentation end-products, transcription profile, and intracellular metabolite concentrations compared to its parent strain (DSM1313 Δhpt Δspo0A). The Δpta-deficient strain grew slower and had 30 % lower final biomass concentration compared to the parent strain, yet produced 75 % more ethanol. A Δldh Δpta double-mutant strain evolved for faster growth had a growth rate and ethanol yield comparable to the parent strain, whereas its biomass accumulation was comparable to Δpta. Free amino acids were secreted by all examined strains, with both Δpta strains secreting higher amounts of alanine, valine, isoleucine, proline, glutamine, and threonine. Valine concentration for Δldh Δpta reached 5 mM by the end of growth, or 2.7 % of the substrate carbon utilized. These secreted amino acid concentrations correlate with increased intracellular pyruvate concentrations, up to sixfold in the Δpta and 16-fold in the Δldh Δpta strain. We hypothesize that the deletions in fermentation end-product pathways result in an intracellular redox imbalance, which the organism attempts to relieve, in part by recycling NADP+ through increased production of amino acids.


Fermentation Cellobiose Free Amino Acid Parent Strain Ethanol Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Office of Biological and Environmental Research in the DOE Office of Science through the BioEnergy Science Center, a U.S. DOE Bioenergy Research Center. Oak Ridge National Laboratory is managed by UT-Batelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. We would like to thank Mascoma Corporation, Lebanon, NH, for the use of strains used in this study, Marybeth I. Maloney for performing DNA sequencing, and Kyle D. Hirst for performing the TOC/TN analysis.

Supplementary material

10295_2013_1275_MOESM1_ESM.xls (160 kb)
Supplementary material 1 (XLS 159 kb)


  1. 1.
    Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77:8288–8294PubMedCrossRefGoogle Scholar
  2. 2.
    Bhat S, Goodenough PW, Owen E, Bhat MK (1993) Cellobiose: a true inducer of cellulosome in different strains of Clostridium thermocellum. FEMS Microbiol Lett 111:73–78CrossRefGoogle Scholar
  3. 3.
    Brown SD, Guss AM, Karpinets TV, Parks JM, Smolin N, Yang S, Land ML, Klingeman DM, Bhandiwad A, Rodriguez MJ, Raman B, Shao X, Mielenz JR, Smith JC, Keller M, Lynd LR (2011) Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc Natl Acad Sci USA 108:13752–13757PubMedCrossRefGoogle Scholar
  4. 4.
    Craig CL, Weber RS (1998) Selection costs of amino acid substitutions in ColE1 and ColIa gene clusters harbored by Escherichia coli. Mol Biol Evol 15:774–776PubMedCrossRefGoogle Scholar
  5. 5.
    Cripps RE, Eley K, Leak DJ, Rudd B, Taylor M, Todd M, Boakes S, Martin S, Atkinson T (2009) Metabolic engineering of Geobacillus thermoglucosidasius for high-yield ethanol production. Metab Eng 11:398–408PubMedCrossRefGoogle Scholar
  6. 6.
    Dellomonaco C, Fava F, Gonzalez R (2010) The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microb Cell Fact 9:3PubMedCrossRefGoogle Scholar
  7. 7.
    Desvaux M (2006) Unravelling carbon metabolism in anaerobic cellulolytic bacteria. Biotechnol Prog 22:1229–1238PubMedCrossRefGoogle Scholar
  8. 8.
    Desvaux M, Guedon E, Petitdemange H (2001) Carbon flux distribution and kinetics of cellulose fermentation in steady-state continuous cultures of Clostridium cellulolyticum on a chemically defined medium. J Bacteriol 183:119–130PubMedCrossRefGoogle Scholar
  9. 9.
    Ding S, Xu Q, Crowley M, Zeng Y, Nimlos M, Lamed R, Bayer EA, Himmel ME (2008) A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Curr Opin Biotechnol 19:218–227PubMedCrossRefGoogle Scholar
  10. 10.
    Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, Thorne P, Lynd LR (2012) Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol 103:293–299PubMedCrossRefGoogle Scholar
  11. 11.
    Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, Tapia R, Han C, Lapidus A, Lucas S, Cheng J, Pitluck S, Woyke T, Ivanova N, Mikhailova N, Land M, Hauser L, Argyros DA, Goodwin L, Hogsett D, Caiazza N (2011) Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313. J Bacteriol 193:2906–2907PubMedCrossRefGoogle Scholar
  12. 12.
    Georgieva TI, Ahring BK (2007) Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1. Appl Microbiol Biotechnol 77:61–68PubMedCrossRefGoogle Scholar
  13. 13.
    Goward CR, Nicholls DJ (1994) Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci 3:1883–1888PubMedCrossRefGoogle Scholar
  14. 14.
    Guedon E, Payot S, Desvaux M, Petitdemange H (1999) Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol 181:3262–3269PubMedGoogle Scholar
  15. 15.
    Holwerda EK, Hirst KD, Lynd LR (2012) A defined growth medium with very low background carbon for culturing Clostridium thermocellum. J Ind Microbiol Biotechnol 39(6):943–947PubMedCrossRefGoogle Scholar
  16. 16.
    Kengen S, Stams A (1994) Formation of l-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch Microbiol 161:168–175CrossRefGoogle Scholar
  17. 17.
    Klotzsch H (1969) Enzymatic assay of phosphotransacetylase (EC Meth Enzymol XIII:381–386Google Scholar
  18. 18.
    Lamed R, Zeikus JG (1980) Ethanol production by thermophilic bacteria: relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanaerobium brockii. J Bacteriol 144:569–578PubMedGoogle Scholar
  19. 19.
    Lamed R, Zeikus JG (1981) Thermostable, ammonium-activated malic enzyme of Clostridium thermocellum. Biochim Biophys Acta 660:251–255PubMedCrossRefGoogle Scholar
  20. 20.
    Lawrence SH, Luther KB, Schindelin H, Ferry JG (2006) Structural and functional studies suggest a catalytic mechanism for the phosphotransacetylase from Methanosarcina thermophila. J Bacteriol 188:1143–1154PubMedCrossRefGoogle Scholar
  21. 21.
    Lengeler JW, Drews G, Schlegel HG (1999) Biology of the Prokaryotes. Thieme, StuttgartGoogle Scholar
  22. 22.
    Li H, Knutson BL, Nokes SE, Lynn BC, Flythe MD (2012) Metabolic control of Clostridium thermocellum via inhibition of hydrogenase activity and the glucose transport rate. Appl Microbiol BiotechnolGoogle Scholar
  23. 23.
    Madern D (2002) Molecular evolution within the l-malate and l-lactate dehydrogenase super-family. J Mol Evol 54:825–840PubMedCrossRefGoogle Scholar
  24. 24.
    Olson DG, McBride JE, Joe Shaw A, Lynd LR (2012) Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 23(3):396–405PubMedCrossRefGoogle Scholar
  25. 25.
    Ozkan M, Yilmaz EI, Lynd LR, Ozcengiz G (2004) Cloning and expression of the Clostridium thermocellum l-lactate dehydrogenase gene in Escherichia coli and enzyme characterization. Can J Microbiol 50:845–851PubMedCrossRefGoogle Scholar
  26. 26.
    Payot S, Guedon E, Cailliez C, Gelhaye E, Petitdemange H (1998) Metabolism of cellobiose by Clostridium cellulolyticum growing in continuous culture: evidence for decreased NADH reoxidation as a factor limiting growth. Microbiology 144:375–384CrossRefGoogle Scholar
  27. 27.
    R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0Google Scholar
  28. 28.
    Rydzak T, Levin DB, Cicek N, Sparling R (2011) End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405. Appl Microbiol Biotechnol 92:199–209PubMedCrossRefGoogle Scholar
  29. 29.
    Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R (2012) Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol 12:214PubMedCrossRefGoogle Scholar
  30. 30.
    Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649PubMedCrossRefGoogle Scholar
  31. 31.
    Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR (2008) Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci USA 105:13769–13774PubMedCrossRefGoogle Scholar
  32. 32.
    Shimizu M, Fujii T, Masuo S, Takaya N (2010) Mechanism of de novo branched-chain amino acid synthesis as an alternative electron sink in hypoxic Aspergillus nidulans cells. Appl Environ Microbiol 76:1507–1515PubMedCrossRefGoogle Scholar
  33. 33.
    Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792PubMedCrossRefGoogle Scholar
  34. 34.
    Stevenson IL (1978) The production of extracellular amino acids by rumen bacteria. Can J Microbiol 24:1236–1241PubMedCrossRefGoogle Scholar
  35. 35.
    Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman and Company, New YorkGoogle Scholar
  36. 36.
    Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 79:6591–6599CrossRefGoogle Scholar
  37. 37.
    Xu QS, Jancarik J, Lou Y, Kuznetsova K, Yakunin AF, Yokota H, Adams P, Kim R, Kim S (2005) Crystal structures of a phosphotransacetylase from Bacillus subtilis and its complex with acetyl phosphate. J Struct Funct Genomics 6:269–279PubMedCrossRefGoogle Scholar
  38. 38.
    Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez MJ, Brown SD (2009) Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics 10:34PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang YP, Lynd LR (2005) Regulation of cellulase synthesis in batch and continuous cultures of Clostridium thermocellum. J Bacteriol 187:99–106PubMedCrossRefGoogle Scholar
  40. 40.
    Zhang YP, Lynd LR (2005) Cellulose utilization by Clostridium thermocellum: bioenergetics and hydrolysis product assimilation. Proc Natl Acad Sci USA 102:7321–7325PubMedCrossRefGoogle Scholar
  41. 41.
    Zverlov VV, Schwarz WH (2008) Bacterial cellulose hydrolysis in anaerobic environmental subsystems—Clostridium thermocellum and Clostridium stercorarium, thermophilic plant-fiber degraders. Ann N Y Acad Sci 1125:298–307PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Douwe van der Veen
    • 1
    • 2
  • Jonathan Lo
    • 1
    • 2
    • 7
  • Steven D. Brown
    • 2
    • 3
  • Courtney M. Johnson
    • 2
    • 3
  • Timothy J. Tschaplinski
    • 2
    • 3
  • Madhavi Martin
    • 2
    • 3
  • Nancy L. Engle
    • 2
    • 3
  • Robert A. van den Berg
    • 4
    • 5
  • Aaron D. Argyros
    • 6
  • Nicky C. Caiazza
    • 6
    • 8
  • Adam M. Guss
    • 2
    • 3
  • Lee R. Lynd
    • 1
    • 2
    • 6
    Email author
  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.BioEnergy Science CenterOak RidgeUSA
  3. 3.Biosciences DivisionOak Ridge National LaboratoryOak RidgeUSA
  4. 4.Research Group on Quantitative PsychologyKatholieke Universiteit LeuvenLeuvenBelgium
  5. 5.GlaxoSmithKline VaccinesRixensartBelgium
  6. 6.Mascoma CorporationLebanonUSA
  7. 7.Department of Biological SciencesDartmouth CollegeHanoverUSA
  8. 8.Synthetic Genomics Inc.La JollaUSA

Personalised recommendations