Gene expression profiling of a nisin-sensitive Listeria monocytogenes Scott A ctsR deletion mutant

  • Yanhong Liu
  • Shannon Morgan
  • Amy Ream
  • Lihan Huang
Genetics and Molecular Biology of Industrial Organisms


Listeria monocytogenes is a food-borne pathogen of significant threat to public health. Nisin is the only bacteriocin that can be used as a food preservative. Due to its antimicrobial activity, it can be used to control L. monocytogenes in food; however, the antimicrobial mechanism of nisin activity against L. monocytogenes is not fully understood. The CtsR (class III stress gene repressor) protein negatively regulates the expression of class III heat shock genes. A spontaneous pressure-tolerant ctsR deletion mutant that showed increased sensitivity to nisin has been identified. Microarray technology was used to monitor the gene expression profiles of the ctsR mutant under treatments with nisin. Compared to the nisin-treated wild type, 113 genes were up-regulated (>2-fold increase) in the ctsR deletion mutant whereas four genes were down-regulated (<−2-fold decrease). The up-regulated genes included genes that encode for ribosomal proteins, membrane proteins, cold-shock domain proteins, translation initiation and elongation factors, cell division, an ATP-dependent ClpC protease, a putative accessory gene regulator protein D, transport and binding proteins, a beta-glucoside-specific phosphotransferase system IIABC component, as well as hypothetical proteins. The down-regulated genes consisted of genes that encode for virulence, a transcriptional regulator, a stress protein, and a hypothetical protein. The gene expression changes determined by microarray assays were confirmed by quantitative real-time PCR analyses. Moreover, an in-frame deletion mutant for one of the induced genes (LMOf2365_1877) was constructed in the wild-type L. monocytogenes F2365 background. ΔLMOf2365_1877 had increased nisin sensitivity compared to the wild-type strain. This study enhances our understanding of how nisin interacts with the ctsR gene product in L. monocytogenes and may contribute to the understanding of the antibacterial mechanisms of nisin.


Listeria monocytogenes Scott A Microarray and quantitative real-time PCR Nisin 



We would like to thank Dr. Pina Fratamico and Dr. James Smith (USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA) for critical reading of the manuscript.

Supplementary material

10295_2013_1243_MOESM1_ESM.doc (50 kb)
Supplementary material 1 (DOC 50 kb)
10295_2013_1243_MOESM2_ESM.doc (28 kb)
Supplementary material 2 (DOC 28 kb)


  1. 1.
    Abee T, Krockel L, Hill C (1995) Bacteriocins: modes of action and potentials in food preservation and control of food poisoning. Int J Food Microbiol 28:169–185PubMedCrossRefGoogle Scholar
  2. 2.
    Bae D, Crowley MR, Wang C (2011) Transcriptome analysis of Listeria monocytogenes grown on a ready-to-eat meat matrix. J Food Prot 74(7):1104–1111PubMedCrossRefGoogle Scholar
  3. 3.
    Breukink E, de Kruijff B (2006) Lipid II as a target for antibiotics. Nat Rev Drug Discov 5(4):321–332PubMedCrossRefGoogle Scholar
  4. 4.
    Brewster JD (2003) A simple micro-growth assay for enumerating bacteria. J Microbiol Methods 53(1):77–86PubMedCrossRefGoogle Scholar
  5. 5.
    CDC (2011a) Multistate outbreak of listeriosis associated with Jensen Farms Cantaloupe-United States. Available at: (accessed 7.5.12)
  6. 6.
    CDC (2011b) Multistate outbreak of listeriosis linked to whole cantaloupes from Jensen Farm, Colorado. Available at: (accessed 7.5.12)
  7. 7.
    Chaturongakul S, Boor KJ (2004) RsbT and RsbV contribute to sigmaB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Appl Environ Microbiol 70(9):5349–5356PubMedCrossRefGoogle Scholar
  8. 8.
    Collins B, Joyce S, Hill C, Cotter PD, Ross RP (2010) TelA contributes to the innate resistance of Listeria monocytogenes to nisin and other cell wall-acting antibiotics. Antimicrob Agents Chemother 54(11):4658–4663PubMedCrossRefGoogle Scholar
  9. 9.
    Collins B, Curtis N, Cotter PD, Hill C, Ross RP, The ABC Transporter (2010) AnrAB, contributes to the innate resistance of Listeria monocytogenes to nisin, bacitracin and various beta-lactam antibiotics. Antimicrob Agents Chemother 54(10):4416–4423PubMedCrossRefGoogle Scholar
  10. 10.
    Cotter PD, Guinane CM, Hill C (2002) The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother 46(9):2784–2790PubMedCrossRefGoogle Scholar
  11. 11.
    Derré I, Rapoport G, Msadek T (1999) CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Mol Microbiol 31(1):117–131PubMedCrossRefGoogle Scholar
  12. 12.
    Fiocco D, Capozzi V, Collins M, Gallone A, Hols P, Guzzo J, Weidmann S, Rieu A, Msadek T, Spano G (2010) Characterization of the CtsR stress response regulon in Lactobacillus plantarum. J Bacteriol 192(3):896–900PubMedCrossRefGoogle Scholar
  13. 13.
    Food and Drug Administration (FDA) (2012) Information on the recalled Jensen Farms whole cantaloupes. Available at: (accessed 7.5.12)
  14. 14.
    Fox EM, Leonard N, Jordan K (2011) Physiological and transcriptional characterization of persistent and nonpersistent Listeria monocytogenes isolates. Appl Environ Microbiol 77(18):6559–6569PubMedCrossRefGoogle Scholar
  15. 15.
    Gandhi M, Chikindas M (2007) Listeria: a foodborne pathogen that knows how to survive. Int J Food Microbiol 113(1):1–15PubMedCrossRefGoogle Scholar
  16. 16.
    Garsin DA (2010) Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat Rev Microbiol 8(4):290–295PubMedCrossRefGoogle Scholar
  17. 17.
    Gou J, Lee HY, Ahn J (2010) Inactivation kinetics and virulence potential of Salmonella Typhimurium and Listeria monocytogenes treated by combined high pressure and nisin. J Food Prot 73(12):2203–2210PubMedGoogle Scholar
  18. 18.
    Gravesen A, Sørensen K, Aarestrup FM, Knøchel S (2001) Spontaneous nisin-resistant Listeria monocytogenes mutants with increased expression of a putative penicillin-binding protein and their sensitivity to various antibiotics. Microb Drug Resist 7(2):127–135PubMedCrossRefGoogle Scholar
  19. 19.
    Hamon MA, Ribet D, Stavru F, Cossart P (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20(8):360–368PubMedCrossRefGoogle Scholar
  20. 20.
    Hu Y, Raengpradub S, Schwab U, Loss C, Orsi RH, Wiedmann M, Boor KJ (2007) Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Appl Environ Microbiol 73(24):7967–7980PubMedCrossRefGoogle Scholar
  21. 21.
    Joerger RD, Chen H, Kniel KE (2006) Characterization of a spontaneous, pressure-tolerant Listeria monocytogenes Scott A ctsR deletion mutant. Foodborne Pathog Dis 3(2):196–202PubMedCrossRefGoogle Scholar
  22. 22.
    Kalchayanand N, Sikes A, Dunne CP, Ray B (1998) Interaction of hydrostatic pressure, time and temperature of pressurization and pediocin AcH on inactivation of foodborne bacteria. J Food Prot 61(4):425–431PubMedGoogle Scholar
  23. 23.
    Kato M, Hayashi R (1999) Effects of high pressure on lipids and biomembranes for understanding high-pressure-induced biological phenomena. Biosci Biotechnol Biochem 63(8):1321–1328PubMedCrossRefGoogle Scholar
  24. 24.
    Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T, Bennik MH (2003) The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol Microbiol 49(5):1227–1238PubMedCrossRefGoogle Scholar
  25. 25.
    Karatzas KA, Valdramidis VP, Wells-Bennik MH (2005) Contingency locus in ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl Environ Microbiol 71(12):8390–8396PubMedCrossRefGoogle Scholar
  26. 26.
    Lee J, Kaletunç G (2010) Inactivation of Salmonella enteritidis strains by combination of high hydrostatic pressure and nisin. Int J Food Microbiol 140(1):49–56. doi:10.1016/j.ijfoodmicro.2010.02.010 PubMedCrossRefGoogle Scholar
  27. 27.
    Liu Y, Ream A (2008) Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk. Appl Environ Microbiol 74(22):6859–6866PubMedCrossRefGoogle Scholar
  28. 28.
    Liu Y, Ream A, Joerger RD, Liu J, Wang Y (2011) Gene expression profiling of a pressure tolerant Listeria monocytogenes Scott A ctsR deletion mutant. J Ind Microbiol Biotechnol 38(9):1523–1533PubMedCrossRefGoogle Scholar
  29. 29.
    Liu Y, Huang L, Joerger RD, Gunther NW IV (2012) Genes that are affected in high hydrostatic pressure treatments in a Listeria monocytogenes Scott A ctsR deletion mutant. J Microbial Biochem Technol S2:003. doi:10.4172/1948-5948.S2-003 Google Scholar
  30. 30.
    Nair S, Derré I, Msadek T, Gaillot O, Berche P (2000) CtsR controls class III heat shock gene expression in the human pathogen Listeria monocytogenes. Mol Microbiol 35(4):800–811PubMedCrossRefGoogle Scholar
  31. 31.
    Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, Rasko DA, Angiuoli SV, Gill SR, Paulsen IT, Peterson J, White O, Nelson WC, Nierman W, Beanan MJ, Brinkac LM, Daugherty SC, Dodson RJ, Durkin AS, Madupu R, Haft DH, Selengut J, Van Aken S, Khouri H, Fedorova N, Forberger H, Tran B, Kathariou S, Wonderling LD, Uhlich GA, Bayles DO, Luchansky JB, Fraser CM (2004) Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res 32:2386–2395PubMedCrossRefGoogle Scholar
  32. 32.
    Park SF, Stewart GS (1990) High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94(1):129–132PubMedCrossRefGoogle Scholar
  33. 33.
    Pathanibul P, Taylor TM, Davidson PM, Harte F (2009) Inactivation of E. coli and L. innocua in apple and carrot juices using high pressure homogenization and nisin. Int J Food Microbiol 129(3):316–320PubMedCrossRefGoogle Scholar
  34. 34.
    Srikumar S, Fuchs TM (2011) Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol 77(1):281–290PubMedCrossRefGoogle Scholar
  35. 35.
    Tessema GT, Møretrø T, Kohler A, Axelsson L, Naterstad K (2009) Complex phenotypic and genotypic responses of Listeria monocytogenes strains exposed to the Class IIa bacteriocin sakacin P. Appl Environ Microbiol 75(22):6973–6980PubMedCrossRefGoogle Scholar
  36. 36.
    Van Boeijen IK, Chavaroche AA, Valderrama WB, Moezelaar R, Zwietering MH, Abee T (2010) Population diversity of Listeria monocytogenes LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure. Appl Environ Microbiol 76(7):2225–2233PubMedCrossRefGoogle Scholar
  37. 37.
    Zhu X, Long F, Chen Y, Knøchel S, She Q, Shi X (2008) A putative ABC transporter is involved in negative regulation of biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 74(24):7675–7683PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu X, Liu W, Lametsch R, Aarestrup F, Shi C, She Q, Shi X, Knøchel S (2011) Phenotypic, proteomic, and genomic characterization of a putative ABC-transporter permease involved in Listeria monocytogenes biofilm formation. Foodborne Pathog Dis 8(4):495–501PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2013

Authors and Affiliations

  • Yanhong Liu
    • 1
  • Shannon Morgan
    • 2
  • Amy Ream
    • 1
  • Lihan Huang
    • 2
  1. 1.Molecular Characterization of Foodborne Pathogens Research Unit, Eastern Regional Research Center, Agricultural Research ServiceUS Department of AgricultureWyndmoorUSA
  2. 2.Residue Chemistry and Predictive Microbiology Research UnitEastern Regional Research CenterWyndmoorUSA

Personalised recommendations