Utilization of nitrate abolishes the “Custers effect” in Dekkera bruxellensis and determines a different pattern of fermentation products

  • Silvia Galafassi
  • Claudia Capusoni
  • Md Moktaduzzaman
  • Concetta CompagnoEmail author


Nitrate is one of the most abundant nitrogen sources in nature. Several yeast species have been shown to be able to assimilate nitrate and nitrite, but the metabolic pathway has been studied in very few of them. Dekkera bruxellensis can use nitrate as sole nitrogen source and this metabolic characteristic can render D. bruxellensis able to overcome S. cerevisiae populations in industrial bioethanol fermentations. In order to better characterize how nitrate utilization affects carbon metabolism and the yields of the fermentation products, we investigated this trait in defined media under well-controlled aerobic and anaerobic conditions. Our experiments showed that in D. bruxellensis, utilization of nitrate determines a different pattern of fermentation products. Acetic acid, instead of ethanol, became in fact the main product of glucose metabolism under aerobic conditions. We have also demonstrated that under anaerobic conditions, nitrate assimilation abolishes the “Custers effect”, in this way improving its fermentative metabolism. This can offer a new strategy, besides aeration, to sustain growth and ethanol production for the employment of this yeast in industrial processes.


Dekkera bruxellensis Nitrate metabolism Custers effect Ethanol production 



Md Moktaduzzaman has a fellowship from Marie-Curie FP7-PEOPLE-2010-ITN “CORNUCOPIA” project.


  1. 1.
    Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L (1996) Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187–3195PubMedGoogle Scholar
  2. 2.
    Avila J, Pérez MD, Brito N, Gonzàles C, Siverio JM (1995) Cloning and disruption of YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 366:137–142PubMedCrossRefGoogle Scholar
  3. 3.
    Avila J, Gonzàles C, Brito N et al (1998) Clustering of the YNA1 gene encoding a Zn(II)2Cys6 transcriptional factor in the yeast Hansenula polymorpha with the nitrate assimilation genes YNT1, YNI1 and YNR1 and its involvement in their transcriptional activation. Biochem J 335:647–652PubMedGoogle Scholar
  4. 4.
    Blomqvist J, Eberhard T, Schnürer J, Passoth V (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87:1487–1497PubMedCrossRefGoogle Scholar
  5. 5.
    Blomqvist J, South E, Tiukova I, Momeni MH, Hansson H, Ståhlberg J, Horn SJ, Schnürer J, Passoth V (2011) Fermentation of lignocellulosic hydrolysate by the alternative industrial ethanol yeast Dekkera bruxellensis. Lett Appl Microbiol 53:73–78PubMedCrossRefGoogle Scholar
  6. 6.
    Blomqvist J, Nogué VN, Gorwa-Grauslund M, Passoth V (2012) Physiological requirements for growth and competitiveness of Dekkera bruxellensis under oxygen-limited or anaerobic conditions. Yeast 29:265–274PubMedCrossRefGoogle Scholar
  7. 7.
    Böer E, Schröter A, Bode R, Piontek M, Kunze G (2009) Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans. Yeast 26:83–93PubMedCrossRefGoogle Scholar
  8. 8.
    Boulton R, Singleton V, Bisson L, Kunkee R (eds) (1996) Principles and practices of winemaking. Chapman & Hall, New YorkGoogle Scholar
  9. 9.
    Ciani M, Ferraro L (1997) Role of oxygen on acetic acid production by Brettanomyces/Dekkera in winemaking. J Sci Food Agrc 75:489–495CrossRefGoogle Scholar
  10. 10.
    Conterno L, Joseph LCM, Arvik TJ, Henick-Kling T, Bisson LF (2006) Genetic and physiological characterization of Brettanomyces bruxellensis strains isolated from wine. Am J Enol Vitic 57:139–147Google Scholar
  11. 11.
    De Barros Pita W, Leite FC, de Souza Liberal A, Simões DA, Morais MA Jr (2011) The ability to use nitrate confers advantage to Dekkera bruxellensis over S. cerevisiae and can explain its adaptation to industrial fermentation processes. Antonie Leeuwenhoek 100:99–107PubMedCrossRefGoogle Scholar
  12. 12.
    Fugelsang KC (ed) (1996) Wine microbiology. Chapman & Hall, New YorkGoogle Scholar
  13. 13.
    Galafassi S, Merico A, Pizza F, Hellborg L, Molinari F, Piškur J, Compagno C (2011) Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low pH conditions. J Ind Microbiol Biotechnol 38:1079–1088PubMedCrossRefGoogle Scholar
  14. 14.
    Garcìa-Lugo P, Gonzàles C, Perdomo G, Brito N, Avila J, de la Rosa JM, Siverio JM (2000) Cloning, sequencing and expression of HaYNR1 and HaYNI1, encoding nitrate and nitrite reductases in the yeast Hansenula anomala. Yeast 16:1099–1105PubMedCrossRefGoogle Scholar
  15. 15.
    Guerrero MG, Vega JM, Losada M (1981) The assimilatory nitrate-reducing system and its regulation. Annu Rev Plant Physiol 32:169–204CrossRefGoogle Scholar
  16. 16.
    Jeffries TW (1983) Effects of nitrate on fermentation of xylose and glucose by Pachisolen tannophilus. Nature Biotechnol 1:503–506CrossRefGoogle Scholar
  17. 17.
    Leite FC, Basso TO, de Barros Pita W, Gombert AK, Simões DA, de Morais MA Jr (2012) Quantitative aerobic physiology of the yeast Dekkera bruxellensis, a major contaminant in bioethanol production plants. FEMS Yeast Res Sep 21, p S1567 doi:  10.1111/1567-1364.12007
  18. 18.
    Liberal ATS, Basílio ACM, Resende AM, Brasileiro BTRV, da Silva-Filho EA, Morais JOF, Simões DA, Morais MA Jr (2007) Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J Appl Microbiol 102:538–547Google Scholar
  19. 19.
    Machìn F, Perdomo G, Pèrez MD, Brito N, Siverio JM (2000) Evidence for multiple nitrate uptake systems in Hansenula polymorpha. FEMS Microbiol Lett 194:171–174CrossRefGoogle Scholar
  20. 20.
    Merico A, Sulo P, Piškur J, Compagno C (2007) Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. FEBS J 274:976–989PubMedCrossRefGoogle Scholar
  21. 21.
    Oelofse A, Pretorius IS, du Toit M (2008) Significance of Brettanomyces and Dekkera during winemaking: a synoptic review. S Afr J Enol Vitic 29:128–144Google Scholar
  22. 22.
    Panagiotou G, Christakopoulos P, Grotjaer T, Olsson L (2006) Engineering of the redox imbalance of Fusarium oxysporum enables anaerobic growth on xylose. Metab Eng 8:474–482PubMedCrossRefGoogle Scholar
  23. 23.
    Passoth V, Blomqvist J, Schnürer J (2007) Dekkera bruxellensis and Lactobacillus vini from a stable ethanol-producing consortium in a commercial alcohol process. Appl Environ Microbiol 73:4354–4356PubMedCrossRefGoogle Scholar
  24. 24.
    Pereira LF, Bassi AP, Avansini SH, Neto AG, Brasileiro BT, Ceccato-Antonini SR, De Morais MA Jr (2012) The physiological characteristics of the yeast Dekkera bruxellensis in fully fermentative conditions with cell recycling and in mixed cultures with Saccharomyces cerevisiae. Antonie Van Leeuwenhoek 101:529–539PubMedCrossRefGoogle Scholar
  25. 25.
    Piškur J, Ling Z, Marcet-Houben M, Ishchuk OP, Aerts A, LaButti K, Copeland A, Lindquist E, Barry K, Compagno C, Bisson L, Grigoriev IV, Gabaldón T, Phister T (2012) The genome of wine yeast Dekkera bruxellensis provides a tool to explore its food-related properties. Int J Food Microbiol 157:202–209PubMedCrossRefGoogle Scholar
  26. 26.
    Postma E, Verduyn C, Scheffers WA, van Dijken JP (1989) Enzymatic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Env Microbiol 55:468–477Google Scholar
  27. 27.
    Rossi B, Manasse S, Serrani F, Berardi E (2005) Hansenula polymorpha NMR2 and NMR4, two new loci involved in nitrogen metabolite repression. FEMS Yeast Res 5:1009–1017PubMedGoogle Scholar
  28. 28.
    Rozpędowska E, Hellborg L, Ishchuk OP, Orhan F, Galafassi S, Merico A, Woolfit M, Compagno C, Piškur J (2011) Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nat Commun 2:302PubMedCrossRefGoogle Scholar
  29. 29.
    Siverio JM (2002) Assimilation of nitrate by yeasts. FEMS Microbiol Rev 26:277–284PubMedCrossRefGoogle Scholar
  30. 30.
    van Dijken JP, Scheffers AW (1986) Redox balances in the metabolism of sugars by yeasts. FEMS Microbiol Rev 32:199–224Google Scholar
  31. 31.
    Wijsman MR, van Dijken JP, van Kleeff BH, Scheffers WA (1984) Inhibition of fermentation and growth in batch cultures of the yeast Brettanomyces intermedius upon a shift from aerobic to anaerobic conditions (Custers effect). Antonie Leeuwenhoek 50(2):183–192PubMedCrossRefGoogle Scholar
  32. 32.
    Woolfit M, Rozpedowska E, Piškur J, Wolfe KH (2007) Genome survey sequencing of the wine spoilage yeast Dekkera (Brettanomyces) bruxellensis. Eukaryot Cell 6(4):721–733PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2013

Authors and Affiliations

  • Silvia Galafassi
    • 1
  • Claudia Capusoni
    • 1
  • Md Moktaduzzaman
    • 1
  • Concetta Compagno
    • 1
    Email author
  1. 1.Department of Food, Environmental and Nutritional SciencesUniversity of MilanMilanItaly

Personalised recommendations