Journal of Industrial Microbiology & Biotechnology

, Volume 40, Issue 2, pp 169–181

Monascus secondary metabolites: production and biological activity



The genus Monascus, comprising nine species, can reproduce either vegetatively with filaments and conidia or sexually by the formation of ascospores. The most well-known species of genus Monascus, namely, M. purpureus, M. ruber and M. pilosus, are often used for rice fermentation to produce red yeast rice, a special product used either for food coloring or as a food supplement with positive effects on human health. The colored appearance (red, orange or yellow) of Monascus-fermented substrates is produced by a mixture of oligoketide pigments that are synthesized by a combination of polyketide and fatty acid synthases. The major pigments consist of pairs of yellow (ankaflavin and monascin), orange (rubropunctatin and monascorubrin) and red (rubropunctamine and monascorubramine) compounds; however, more than 20 other colored products have recently been isolated from fermented rice or culture media. In addition to pigments, a group of monacolin substances and the mycotoxin citrinin can be produced by Monascus. Various non-specific biological activities (antimicrobial, antitumor, immunomodulative and others) of these pigmented compounds are, at least partly, ascribed to their reaction with amino group-containing compounds, i.e. amino acids, proteins or nucleic acids. Monacolins, in the form of β-hydroxy acids, inhibit hydroxymethylglutaryl-coenzyme A reductase, a key enzyme in cholesterol biosynthesis in animals and humans.


Monascus Red yeast rice Pigments Monacolin K Citrinin 


  1. 1.
    Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H (2005) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red mold rice) and their chemopreventive effects. J Agric Food Chem 53:562–565PubMedCrossRefGoogle Scholar
  2. 2.
    Babitha S, Soccol CS, Pandey A (2006) Jackfruit seed—a novel substrate for the production of Monascus pigments through solid-state fermentation. Food Technol Biotechnol 44:465–471Google Scholar
  3. 3.
    Babitha S, Carvalho JC, Soccol CR, Pandey A (2008) Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World J Microbiol Biotechnol 24:2671–2675CrossRefGoogle Scholar
  4. 4.
    Becker DJ, Gordon RY, Halbert SC, French B, Morris PB, Rader DJ (2009) Red yeast rice for dyslipidemia in statin-intolerant patients: a randomized trial. Ann Intern Med 16:830–839Google Scholar
  5. 5.
    Blanc PJ, Laussac JP, Le Bars J, Le Bars P, Loret MO, Pareilleux A, Prome D, Prome JC, Santerre AL, Goma G (1995) Characterisation of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213PubMedCrossRefGoogle Scholar
  6. 6.
    Blanchi A (2005) Extracts of Monascus purpureus beyond statins- profile of efficacy and safety of the use of extracts of Monascus purpureus. Chin J Integr Med 11:309–313CrossRefGoogle Scholar
  7. 7.
    Brandt S, von Stetten D, Günther M, Hildebrandt P, Frankenberg-Dinkel N (2008) The fungal phytochrome FphA from Aspergillus nidulans. J Biol Chem 283:34605–34614PubMedCrossRefGoogle Scholar
  8. 8.
    Bridge PD, Hawkworth DL (1985) Biochemical tests as an aid to the identification of Monascus species. Lett Appl Microbiol 1:25–29CrossRefGoogle Scholar
  9. 9.
    Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rew 66:447–459CrossRefGoogle Scholar
  10. 10.
    Campoy S, Rumbero A, Martín JF, Liras P (2006) Characterization of an hyperpigmenting mutant of Monascus purpureus IB1: identification of two novel pigment chemical structures. Appl Microbiol Biotechnol 70:488–496PubMedCrossRefGoogle Scholar
  11. 11.
    Carels M, Shepherd D (1975) Sexual reproductive cycle of Monascus in submerged shaken culture. J Bacteriol 122:288–294PubMedGoogle Scholar
  12. 12.
    Carels M, Shepherd D (1977) The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can J Microbiol 23:1360–1377PubMedCrossRefGoogle Scholar
  13. 13.
    Chen F-C, Manchand PS, Whalley WB (1971) The chemistry of fungi. Part LXIV. The structure of monascin. J Chem Soc C 21:3577–3579Google Scholar
  14. 14.
    Chen M-H, Johns MR (1994) Effect of carbon source on ethanol and pigment production by Monascus purpureus. Enzyme Microb Technol 16:584–590CrossRefGoogle Scholar
  15. 15.
    Chen Y-P, Tseng C-P, Chien I-L, Wang W-Y, Liaw L–L, Yuan G-F (2008) Exploring the distribution of citrinin biosynthesis related genes among Monascus species. J Agric Food Chem 56:11762–11772Google Scholar
  16. 16.
    Chen Y-P, Tseng C-P, Liaw L–L, Wang W-Y, Chen I-C, Wu W-J, Wu M-D, Yuan G-F (2008) Cloning and characterization of monacolin K biosynthetic gene cluster from Monascus pilosus. J Agric Food Chem 56:5639–5646PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng M-J, Wu M-D, Chen I-S, Tseng M, Yuan G-F (2011) Chemical constituents from the fungus Monascus purpureus and their antifungal activity. Phytochem Lett 4:372–376CrossRefGoogle Scholar
  18. 18.
    Chiu C-H, Ni K-H, Guu Y-K, Pan T-M (2006) Production of red mold rice using a modified Nagata type koji maker. Appl Microbiol Biotechnol 73:297–304PubMedCrossRefGoogle Scholar
  19. 19.
    Endo A (2004) The origin of the statins. Atherosclerosis Suppl 5:125–130CrossRefGoogle Scholar
  20. 20.
    Fielding BC, Holker JSE, Jones DF, Powell ADG, Richmond KW, Robertson A, Whalley WB (1961) The chemistry of fungi. Part XXXIX. The structure of monascin. J Chem Soc 72:4579–4589CrossRefGoogle Scholar
  21. 21.
    Fu G, Xu Y, Li Y, Tan W (2007) Construction of a replacement vector to disrupt pksCT gene for the mycotoxin citrinin biosynthesis in Monascus aurantiacus and maintain food red pigment production. Asia Pac J Clin Nutr 16[Suppl 1]:137–142PubMedGoogle Scholar
  22. 22.
    Hadfield JR, Holker JSE, Stanway DN (1967) The biosynthesis of fungal metabolites. Part II. The β-oxo equivalents in rubropunctatin and monascorubrin. J Chem Soc C 1967:751–755Google Scholar
  23. 23.
    Hajajj H, Klaébé A, Goma G, Blanc PJ, Barbier E, François J (2000) Medium-chain fatty acids affect citrinin production in the filamentous fungus Monascus ruber. Appl Environ Microbiol 66:1120–1125CrossRefGoogle Scholar
  24. 24.
    Haws EJ, Holker JSE, Kelly A, Powell ADG, Robertson A (1959) The chemistry of fungi. Part XXXVII. The structure of rubropunctatin. J Chem Soc (Resumed) 1959:3598–3610Google Scholar
  25. 25.
    Heber D, Yip I, Ashley JM, Elashoff DA, Elashoff RM, Go VL (1999) Cholesterol-lowering effects of a proprietary Chinese red-yeast-rice supplements. Am J Clin Nutr 69:231–236PubMedGoogle Scholar
  26. 26.
    Hsu Y-W, Hsu L-C, Liang Y-H, Kuo Y-H, Pan T-M (2010) Monaphilones A-C, three new antiproliferative azaphilone derivatives from Monascus purpureus NTU 568. J Agric Food Chem 58:8211–8216PubMedCrossRefGoogle Scholar
  27. 27.
    Hsu L-C, Hsu Y-W, Liang Y-H, Liaw C–C, Kuo Y-H, Pan T-M (2012) Induction of apoptosis in human breast adenocarcinoma cells MCF-7 by monapurpyridine A, a new azaphilone derivative from Monascus purpureus NTU 568. Molecules 17:664–673PubMedCrossRefGoogle Scholar
  28. 28.
    Huang Z, Xu Y, Li L, Yanping L (2008) Two new Monascus metabolites with strong blue fluorescence isolated from red yeast rice. J Agric Food Chem 56:112–118PubMedCrossRefGoogle Scholar
  29. 29.
    Jia XQ, Xu ZN, Zhou LP, Sung CK (2010) Elimination of the mycotoxin citrinin in the industrial important strain Monascus purpureus SM001. Metabolic Eng 12:1–7CrossRefGoogle Scholar
  30. 30.
    Jongrungruangchok S, Kittakoop P, Yongsmith B, Bavovada R, Tanasupawat S, Lartpornmatulee N, Thebtaranonth Y (2004) Azaphilone pigments from a yellow mutant of the fungus Monascus kaoliang. Phytochemistry 65:2569–2575PubMedCrossRefGoogle Scholar
  31. 31.
    Jung H, Kim C, Kim K, Shin CS (2003) Color characteristics of Monascus pigments derived by fermentation with various amino acids. J Agric Food Chem 51:1302–1306PubMedCrossRefGoogle Scholar
  32. 32.
    Jůzlová P, Martínková L, Lozinski J, Machek F (1994) Ethanol as substrate for pigment production by the fungus Monascus purpureus. Enzyme Microb Technol 16:996–1001CrossRefGoogle Scholar
  33. 33.
    Jůzlová P, Martínková L, Křen V (1996) Secondary metabolites of the fungus Monascus: a review. J Ind Microbiol 16:163–170CrossRefGoogle Scholar
  34. 34.
    Kim HJ, Ji GE, Lee IH (2007) Natural occurring levels of citrinin and monakolin K in Korean Monascus fermentation products. Food Sci Biotechnol 16:142–145Google Scholar
  35. 35.
    Knecht A, Humpf H-U (2006) Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol Nutr Food Res 50:406–412PubMedCrossRefGoogle Scholar
  36. 36.
    Kumari HPM, Naidu KA, Vishwanatha S, Narasimhamurthy K, Vijayalakshmi G (2009) Safety evaluation of Monascus purpureus red mould rice in albino rats. Food Chem Toxicol 47:1739–1746PubMedCrossRefGoogle Scholar
  37. 37.
    Kumasaki S, Nakanishi K, Nishikawa E, Ohashi M (1962) Structure of monascorubrin. Tetrahedron 18:1171–1184CrossRefGoogle Scholar
  38. 38.
    Lai Y, Wang L, Qing L, Chen F (2011) Effects of cyclic AMP on development and secondary metabolites of Monascus ruber —7. Lett Appl Microbiol 52:420–426PubMedCrossRefGoogle Scholar
  39. 42.
    Lee C-L, Pan T-M (2011) Red mold fermented products and Alzheimer`s disease: a review. Appl Microbiol Biotechnol 91:461–469PubMedCrossRefGoogle Scholar
  40. 39.
    Lee C-L, Wang J–J, Kuo S-L, Pan T-M (2006) Monascus fermentation of discorea for increasing the production of cholesterol-lowering agent monacolin K and antiinflammation agent monascin. Appl Microbiol Biotechnol 72:1254–1262PubMedCrossRefGoogle Scholar
  41. 40.
    Lee C-L, Chen W-P, Wang J–J, Pan T-M (2007) A simple and rapid approach for removing citrinin while retaining monacolin K in red mold rice. J Agric Food Chem 55:11101–11108PubMedCrossRefGoogle Scholar
  42. 41.
    Lee C-L, Kung Y-H, Wu C-L, Hsu Y-W, Pan T-M (2010) Monascin and ankaflavin act as a novel hypolipidemic and high-density lipoprotein cholesterol-raising agents in red mold dioscorea. J Agric Food Chem 58:9013–9019CrossRefGoogle Scholar
  43. 43.
    Li Y, Xu W, Tang Y (2010) Classification, prediction and verification of the regioselectivity of fungal polyketide synthase product template domains. J Biol Chem 285:22764–22773PubMedCrossRefGoogle Scholar
  44. 44.
    Li Y-G, Zhang F, Wang Z-T, Hu Z-B (2004) Identification and chemical profiling of monacolins in red yeast rice using high-performance liquid chromatography with photodiode array detector and mass spectrometry. J Pharm Biomed Anal 35:1101–1112PubMedCrossRefGoogle Scholar
  45. 45.
    Lin TF, Demain AL (1991) Effect of nutrition of Monascus sp. on formation of red pigments. Appl Microbiol Biotechnol 36:70–75CrossRefGoogle Scholar
  46. 46.
    Lin TF, Demain AL (1993) Resting cells studies on formation of water-soluble red pigments by Monascus sp. J Ind Microbiol 12:361–367CrossRefGoogle Scholar
  47. 47.
    Lin TF, Demain AL (1994) Leucine interference in the production of water-soluble red Monascus pigments. Arch Microbiol 162:114–119CrossRefGoogle Scholar
  48. 48.
    Lin TF, Demain AL (1995) Negative effect of ammonium nitrate as nitrogen source on the production of water-soluble red pigments by Monascus sp. Appl Microbiol Biotechnol 43:701–705CrossRefGoogle Scholar
  49. 49.
    Lin TF, Yakushijin K, Buchi GH, Demain AL (1992) Formation of water-soluble Monascus pigments by biological and semi-synthetic processes. J Ind Microbiol 9:173–179CrossRefGoogle Scholar
  50. 50.
    Lin Y-L, Wang T-H, Lee M-H, Su N-W (2008) Biologically active components and nutraceuticals in the Monascus-fermented rice: a review. Appl Microbiol Biotechnol 77:965–973PubMedCrossRefGoogle Scholar
  51. 51.
    Linden H (2002) A white collar protein senses blue light. Science 297:777–778PubMedCrossRefGoogle Scholar
  52. 52.
    Loret M-O, Morel S (2010) Isolation and structural characterization of two new metabolites from Monascus. J Agric Food Chem 58:1800–1803PubMedCrossRefGoogle Scholar
  53. 53.
    Manchand PS, Whalley WB, Chen F-C (1973) Isolation and structure of ankaflavin: a new pigment from Monascus anka. Phytochemistry 12:2531–2532CrossRefGoogle Scholar
  54. 54.
    Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564PubMedCrossRefGoogle Scholar
  55. 57.
    Martínková L, Patáková P (1999) Monascus. In: Robinson RK, Batt CA, Patel PD (eds) Encyclopedia of food microbiology. Academic Press, London, pp 1481–1487CrossRefGoogle Scholar
  56. 55.
    Martínková L, Jůzlová P, Veselý D (1995) Biological activity of polyketide pigments produced by the fungus Monascus. J Appl Bacteriol 79:609–616CrossRefGoogle Scholar
  57. 56.
    Martínková L, Patáková-Jůzlová P, Křen V, Kučerová Z, Havlíček V, Olšovský P, Hovorka O, Říhová B, Veselý D, Veselá D, Ulrichová J, Přikrylová V (1999) Biological activities of oligoketide pigments of Monascus purpureus. Food Add Cont 16:15–24CrossRefGoogle Scholar
  58. 58.
    Mazumder PM, Mazumder R, Mazumder A, Sasmal D (2002) Antimicrobial activity of the mycotoxin citrinin obtained from the fungus Penicillium citrinum. Anc Sci Life 21:1–6Google Scholar
  59. 59.
    Miyake T, Mori A, Kii T, Okuno T, Usui Y, Sato F, Sammoto H, Watanabe A, Kariayma M (2005) Light effects on cell development and secondary metabolism in Monascus. J Ind Microbiol Biotechnol 32:103–108PubMedCrossRefGoogle Scholar
  60. 60.
    Miyake T, Uchitomi K, Zhang M-Y, Kono I, Nozaki N, Sammoto H, Inagaki K (2006a) Effects of the principal nutrients on lovastatin production by Monascus pilosus. Biosci Biotechnol Biochem 70:1154–1159PubMedCrossRefGoogle Scholar
  61. 61.
    Miyake T, Zhang M-Y, Kono I, Nozaki N, Sammoto H (2006b) Repression of secondary metabolite production by exogenous cAMP in Monascus. Biosci Biotechnol Biochem 70:1523–1524Google Scholar
  62. 62.
    Miyake T, Kono I, Nozaki N, Sammoto H (2008) Analysis of pigment compositions in various Monascus cultures. Food Sci Technol Res 14:194–197CrossRefGoogle Scholar
  63. 63.
    Mukherjee G, Singh SK (2011) Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process Biochem 46:188–192CrossRefGoogle Scholar
  64. 64.
    Nozaki H, Date S, Kondo H, Kiyohara H, Takaoka D, Tada T, Nakayama M (1991) Ankalactone, a new α, β-unsaturated γ-lactone from Monascus anka. Agric Biol Chem 55:899–900CrossRefGoogle Scholar
  65. 65.
    Orozco SFB, Kilikian BV (2008) Effect of pH on citrinin and red pigments production by Monascus purpureus CCT3802. World J Microbiol Biotechnol 24:263–268CrossRefGoogle Scholar
  66. 66.
    Osmanova N, Schultze W, Ahoub N (2010) Azaphilones: a class of fungal metabolites with diverse biological activities. Phytochem Rev 9:315–342CrossRefGoogle Scholar
  67. 67.
    Patáková P (2005) Red yeast rice. In: McGraw-Hill Yearbook of Science and Technology, McGraw-Hill, New York, pp 286–288. ISBN 0-07-144504-8Google Scholar
  68. 68.
    Pattanagul P, Pinthong R, Phianmongkhol A, Tharatha S (2008) Mevinolin, citrinin and pigments of adlay angkak fermented by Monascus sp. Int J Food Microbiol 126:20–23PubMedCrossRefGoogle Scholar
  69. 69.
    Pitt JI, Hocking AD (2009) Fungi and food spoilage, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  70. 70.
    Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259PubMedCrossRefGoogle Scholar
  71. 71.
    Sabater-Vilar M, Maas RFM, Fink-Gremmels J (1999) Mutagenicity of commercial Monascus fermentation products and the role of citrinin contamination. Mut Res 444:7–16CrossRefGoogle Scholar
  72. 72.
    Sato K, Iwakami S, Goda Y, Okuyama E, Yoshikira K, Ichi T, Odake Y, Noguchi H, Sankawa U (1992) Novel natural colorants from Monascus anka U-1. Heterocycles 34:2057–2060CrossRefGoogle Scholar
  73. 73.
    Schneweis I, Meyer K, Hörmansdorfer S, Bauer J (2001) Metabolites of Monascus ruber in silages. J Anim Physiol Anim Nutr 85:38–44CrossRefGoogle Scholar
  74. 74.
    Schümann J, Herweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690–703PubMedCrossRefGoogle Scholar
  75. 75.
    Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light receptor for photoadaptation. EMBO J 22:4846–4855PubMedCrossRefGoogle Scholar
  76. 76.
    Seenivasan A, Subhagar S, Aravindan R, Viruthagiri T (2008) Microbial production and biomedical applications of lovastatin. Indian J Pharm Sci 70:701–709PubMedCrossRefGoogle Scholar
  77. 77.
    Shao Y, Xu L, Chen F (2011) Genetic diversity analysis of Monascus strains using SRAP and ISSR markers. Mycoscience 52:224–233CrossRefGoogle Scholar
  78. 78.
    Shepherd D (1977) The relationship between pigment production and sporulation in Monascus. In: Meyrath J, Bu`lock JD (eds) Biotechnology and fungal differentiation. FEMS Symp No 4. Academic Press, London, pp 103–118Google Scholar
  79. 79.
    Su Y-C, Wang J–J, Lin T–T, Pan T-M (2003) Production of the secondary metabolites γ-aminobutyric acid and monakolin K by Monascus. J Ind Microbiol Biotechnol 30:41–46PubMedGoogle Scholar
  80. 80.
    Velmurugan P, Lee YH, Venil CK, Lashmanaperumalsamy P, Chae J-C, Oh BT (2010) Effect of light on growth, intracellular and extracellular pigment production by five pigment-producing filamentous fungi in synthetic medium. J Biosci Bioeng 109:346–350PubMedCrossRefGoogle Scholar
  81. 81.
    Wang J–J, Lee C-L, Pan T-M (2003) Improvement of monacolin K, γ-aminobutyric acid and citrinin production ratio as a function of environmental conditions of Monascus purpureus NTU 601. J Ind Microbiol Biotechnol 30:669–676PubMedCrossRefGoogle Scholar
  82. 82.
    Wild D, Tóth G, Humpf H-U (2003) New Monascus metabolites with a pyridine structure in red fermented rice. J Agric Food Chem 51:5493–5496PubMedCrossRefGoogle Scholar
  83. 83.
    Wong HC, Bau YS (1977) Pigmentation and antibacterial activity of fast neutron- and X-ray induced strains of Monascus purpureus Went. Plant Physiol 60:578–581PubMedCrossRefGoogle Scholar
  84. 84.
    Wong HC, Chien C-Y (1986) Ultrastructure of sexual reproduction of Monascus purpureus. Mycologia 78:713–721CrossRefGoogle Scholar
  85. 85.
    Wong HC, Koehler PE (1981) Production and isolation of an antibiotic from Monascus purpureus and its relationship to pigment production. J Food Sci 46:589–592CrossRefGoogle Scholar
  86. 86.
    Wu M-D, Chen M-J, Yech Y-J, Chen Y-L, Chen K-P, Chen I-S, Yang P-H, Yuan G-F (2011) Monasnicotinates A-D, four new pyridine alkaloids from the fungal strain Monascus pilosus BCRC 38093. Molecules 16:4719–4727PubMedCrossRefGoogle Scholar
  87. 87.
    Xie X, Wang Y, Zhang S, Zhang G, Xu Y, Bi H, Daugherty A, Wang J-A (2012) Chinese red yeast rice attenuates the development of angiotensin II-induced abdominal aortic aneurysm and atherosclerosis. J Nutr Biochem 23:549–556PubMedCrossRefGoogle Scholar
  88. 88.
    Xu B-J, Wang Q-J, Jia X-Q, Sung C-K (2005) Enhanced lovastatin production by solid state fermentation of Monascus ruber. Biotechnol Bioproc Eng 10:78–84CrossRefGoogle Scholar
  89. 89.
    Yongsmith B, Tabloka W, Yongmanitchai W, Bavavoda R (1993) Culture conditions for yellow pigment formation by Monascus sp. KB 10 grown on cassava medium. World J Microbiol Biotechnol 9:85–90CrossRefGoogle Scholar
  90. 90.
    Yu C–C, Wang J–J, Lee C-L, Lee S-H, Pan T-M (2008) Safety and mutagenicity evaluation of nanoparticulate red mold rice. J Agric Food Chem 56:11038–11048PubMedCrossRefGoogle Scholar
  91. 91.
    Yu J-H (2006) Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J Microbiol 44:145–154PubMedGoogle Scholar
  92. 92.
    Zheng Y, Xin Y, Shi X, Guo Y (2010) Cytotoxicity of Monascus pigments and their derivatives to human cancer cells. J Agric Food Chem 58:9523–9528PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  1. 1.Department of BiotechnologyInstitute of Chemical Technology PraguePrague 6Czech Republic

Personalised recommendations