Journal of Industrial Microbiology & Biotechnology

, Volume 40, Issue 1, pp 123–132

Bioconversion of Agave tequilana fructans by exo-inulinases from indigenous Aspergillus niger CH-A-2010 enhances ethanol production from raw Agave tequilana juice

  • Carlos Huitrón
  • Rosalba Pérez
  • Luís Gutiérrez
  • Patricia Lappe
  • Pavel Petrosyan
  • Jesús Villegas
  • Cecilia Aguilar
  • Leticia Rocha-Zavaleta
  • Abel Blancas
Fermentation, Cell Culture and Bioengineering

Abstract

Agave tequilana fructans are the source of fermentable sugars for the production of tequila. Fructans are processed by acid hydrolysis or by cooking in ovens at high temperature. Enzymatic hydrolysis is considered an alternative for the bioconversion of fructans. We previously described the isolation of Aspergillus niger CH-A-2010, an indigenous strain that produces extracellular inulinases. Here we evaluated the potential application of A. niger CH-A-2010 inulinases for the bioconversion of A. tequilana fructans, and its impact on the production of ethanol. Inulinases were analyzed by Western blotting and thin layer chromatography. Optimal pH and temperature conditions for inulinase activity were determined. The efficiency of A. niger CH-A-2010 inulinases was compared with commercial enzymes and with acid hydrolysis. The hydrolysates obtained were subsequently fermented by Saccharomyces cerevisiae to determine the efficiency of ethanol production. Results indicate that A. niger CH-A-2010 predominantly produces an exo-inulinase activity. Optimal inulinase activity occurred at pH 5.0 and 50 °C. Hydrolysis of raw agave juice by CH-A-2010 inulinases yielded 33.5 g/l reducing sugars, compared with 27.3 g/l by Fructozyme® (Novozymes Corp, Bagsværd, Denmark) and 29.4 g/l by acid hydrolysis. After fermentation of hydrolysates, we observed that the conversion efficiency of sugars into ethanol was 97.5 % of the theoretical ethanol yield for enzymatically degraded agave juice, compared to 83.8 % for acid-hydrolyzed juice. These observations indicate that fructans from raw Agave tequilana juice can be efficiently hydrolyzed by using A. niger CH-A-2010 inulinases, and that this procedure impacts positively on the production of ethanol.

Keywords

Inulinases Enzymatic hydrolysis Agave tequilana fructans Ethanol production Tequila 

References

  1. 1.
    Akimoto H, Kushima T, Nakamura T, Ohta K (1999) Transcriptional analysis of two endoinulinase genes inuA and inuB in Aspergillus niger and nucleotide sequences of their promoter regions. J Biosci Bioeng 88:599–604PubMedCrossRefGoogle Scholar
  2. 2.
    Arand M, Golubev AM, Neto JR, Polikarpov I, Wattiez R, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Shabalin KA, Shishliannikov SM, Chepurnaya OV, Neustroev KN (2002) Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori. Biochem J 362:31–135CrossRefGoogle Scholar
  3. 3.
    Arrizon J, Morel S, Gschaedler A, Monsan P (2011) Purification and substrate specificities from Kluyveromyces marxianus isolated from the fermentation process of Mezcal. Bioresour Technol 102:3298–3303PubMedCrossRefGoogle Scholar
  4. 4.
    Avila-Fernandez A, Rendon-Poujol X, Olvera C, Gonzalez F, Capella S, Peña-Alvarez A, Lopez-Munguia A (2009) Enzymatic hydrolysis of fructans in the tequila production process. J Agr Food Chem 57:5578–5585CrossRefGoogle Scholar
  5. 5.
    Barthomeuf C, Regerat F, Pourrat J (1991) Production of inulinases by a new mold of Penicillium rugulosum. J Ferment Bioeng 72:491–494CrossRefGoogle Scholar
  6. 6.
    Bender JP, Mazutti MA, de Oliveira D, Di Luccio M, Treichel H (2006) Inulinase production by Kluyveromyces marxianus NRRL Y-7571 using solid state fermentation. Appl Biochem Biotech 132:951–958CrossRefGoogle Scholar
  7. 7.
    Coitinho JB, Guimaraes VM, De Almeida MN, Falkoski DL, De Queiroz JH, De Rezende ST (2010) Characterization of an exoinulinase produced by Aspergillus terreus CCT 4083 grown on sugar cane bagasse. J Agr Food Chem 58:8386–8391CrossRefGoogle Scholar
  8. 8.
    De Siquiera FG, de Siqueira AG, de Siqueira EG, Carvalho MA, Peretti BM, Jaramillo PM, Teixeira RS, Dias ES, Felix CR, Filho EX (2010) Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues. Biodegradation 21:815–824CrossRefGoogle Scholar
  9. 9.
    Favela-Torres E, Allais JJ, Baratti J (1986) Kinetics of batch fermentations for ethanol production with Zymomonas mobilis growing on Jerusalem artichoke juice. Biotechnol Bioeng 28:850–856PubMedCrossRefGoogle Scholar
  10. 10.
    Feltham RK, Power AK, Pell PA, Sneath PA (1978) A simple method for storage of bacteria at –76 degrees C. J Appl Bacteriol 44:313–316PubMedCrossRefGoogle Scholar
  11. 11.
    Gill PK, Manhas RK, Singh J, Singh P (2004) Purification and characterization of an exoinulinase from Aspergillus fumigatus. Appl Biochem Biotechnol 117:19–32PubMedCrossRefGoogle Scholar
  12. 12.
    Huitron C, Perez R, Sanchez AE, Lappe P, Rocha-Zavaleta L (2008) Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes. J Environ Biol 29:37–41PubMedGoogle Scholar
  13. 13.
    Lopez E, Deive FJ, Longo MA, Sanroman MA (2010) Strategies for utilization of food-processing wastes to produce lipases in solid-state cultures of Rhizopus oryzae. Bioproc Biosyst Eng 33:929–935CrossRefGoogle Scholar
  14. 14.
    Lopez MG, Mancilla-Margalli NA, Mendoza-Diaz G (2003) Molecular structures of fructans from Agave tequilana Weber var. azul. J Agr Food Chem 51:7835–7840CrossRefGoogle Scholar
  15. 15.
    Mazutti MA, Skrowonski A, Boni G, Zabot GL, Silva MF, de Oliveira D, Di Luccio M, Filho FM, Rodrigues MI, Treichel H (2010) Partial characterization of inulinases obtained by submerged and solid-state fermentation using agroindustrial residues as substrates: a comparative study. Appl Biochem Biotech 160:682–693CrossRefGoogle Scholar
  16. 16.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  17. 17.
    Moran-Marroquin GA, Cordova J, Valle-Rodriguez JO, Estarron-Espinosa M, Diaz-Montaño DM (2011) Effect of dilution rate and nutrients addition on the fermentative capability and synthesis of aromatic compounds of two indigenous strains of Saccharomyces cerevisiae in continuous cultures fed with Agave tequilana juice. Int J Food Microbiol 151:87–92PubMedCrossRefGoogle Scholar
  18. 18.
    Moriyama S, Tanaka H, Uwataki M, Muguruma M, Ohta K (2003) Molecular cloning and characterization of an endoinulinase gene from Aspergillus niger strain 12 and its expression in Pichia pastoris. J Biosci Bioeng 96:324–331PubMedGoogle Scholar
  19. 19.
    Mutanda T, Wilhelmi B, Whiteley CG (2009) Controlled production of fructose by an exoinulinase from Aspergillus ficuum. Appl Biochem Biotech 159:65–77CrossRefGoogle Scholar
  20. 20.
    Negro JM, Ballesteros I, Manzanares P, Oliva JM, Saez F, Ballesteros M (2006) Inulin-containing biomass for ethanol production. Appl Biochem Biotech 132:922–932CrossRefGoogle Scholar
  21. 21.
    Nguyen SK, Sophonputtanaphoca S, Kim E, Penner MH (2009) Hydrolytic methods for the quantification of fructose equivalents in herbaceous biomass. Appl Biochem Biotech 158:352–361CrossRefGoogle Scholar
  22. 22.
    Ohta K, Hamada S, Nakamura T (1993) Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl Environ Microb 59:729–733Google Scholar
  23. 23.
    Ohta K, Akimoto H, Matsuda S, Toshimitsu D, Nakamura T (1998) Molecular cloning and sequence analysis of two endoinulinase genes from Aspergillus niger. Biosci Biotechnol Biochem 62:1731–1738PubMedCrossRefGoogle Scholar
  24. 24.
    Pandey A, Soccol CR, Selvakumar P, Soccol VT, Krieger N, Fontana JD (1999) Recent developments in microbial inulinases: its production, properties, and industrial applications. Appl Biochem Biotech 81:35–52CrossRefGoogle Scholar
  25. 25.
    Prabhjot KG, Rajesh KM, Prabhjeet S (2006) Comparative analysis of thermostability of extracellular inulinase activity from Aspergillus fumigatus with commercially available (Novozyme) inulinase. Bioresour Technol 97:355–358CrossRefGoogle Scholar
  26. 26.
    Sanchez-Marroquin A, Hope PH (1953) Agave juices: fermentation and chemical composition studies of some species. J Agr Food Chem 1:246–249CrossRefGoogle Scholar
  27. 27.
    Skowronek M, Fiedurek J (2003) Selection of biochemical mutants of Aspergillus niger resistant to some abiotic stresses with increased inulinase production. J Appl Microbiol 95:686–692PubMedCrossRefGoogle Scholar
  28. 28.
    Tapia-Tussell R, Lappe P, Ulloa M, Quijano-Ramayo A, Caceres-Farfan M, Larque-Saavedra A, Perez-Brito D (2006) A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes. Mol Biotechnol 33:67–70PubMedGoogle Scholar
  29. 29.
    Treichel H, Mazutti MA, Filho FM, Rodrigues MI (2009) Technical viability of the production, partial purification and characterization of inulinase using pretreated agroindustrial residues. Bioproc Biosyst Eng 32:425–433CrossRefGoogle Scholar
  30. 30.
    Valle-Rodriguez JO, Hernandez-Cortes G, Cordova J, Estarron-Espinosa M, Diaz-Montaño DM (2012) Fermentation of Agave tequilana juice by Kloeckera africana: influence of amino-acid supplementations. Antonie Van Leeuwenhoek 101:195–204PubMedCrossRefGoogle Scholar
  31. 31.
    Viswanathan P, Kulkarni PR (1995) Enhancement of inulinase production by Aspergillus niger van Teighem. J Appl Bacteriol 78:384–386PubMedCrossRefGoogle Scholar
  32. 32.
    Yuan X-L, Goosen C, Kools H, van der Maarel MJ, van der Hondel CA, Dijkhuizen L, Ram AF (2006) Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger. Microbiology 152:3061–3073PubMedCrossRefGoogle Scholar
  33. 33.
    Yuan X-L, Roubos JA, van der Hondel CA, Ram AFJ (2008) Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics 279:11–26PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang T, Chi Z, Zhao CH, Chi ZM, Gong F (2010) Bioethanol production from hydrolysates of inulin and the tuber meal of Jerusalem artichoke by Saccharomyces sp. W0. Bioresour Technol 101:8166–8170PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  • Carlos Huitrón
    • 1
  • Rosalba Pérez
    • 4
  • Luís Gutiérrez
    • 1
  • Patricia Lappe
    • 2
  • Pavel Petrosyan
    • 3
  • Jesús Villegas
    • 1
  • Cecilia Aguilar
    • 1
  • Leticia Rocha-Zavaleta
    • 1
  • Abel Blancas
    • 1
  1. 1.Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico DFMexico
  2. 2.Departamento de Botánica, Instituto de BiologíaUNAMMexico CityMexico
  3. 3.Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones BiomédicasUNAMMexico CityMexico
  4. 4.Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones BiomédicasUNAM, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”Mexico CityMexico

Personalised recommendations