An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue

  • Dayu Yu
  • Fuchao Xu
  • Jonathan Valiente
  • Siyuan Wang
  • Jixun ZhanEmail author
Natural Products


A putative indigoidine biosynthetic gene cluster was located in the genome of Streptomyces chromofuscus ATCC 49982. The silent 9.4-kb gene cluster consists of five open reading frames, named orf1, Sc-indC, Sc-indA, Sc-indB, and orf2, respectively. Sc-IndC was functionally characterized as an indigoidine synthase through heterologous expression of the enzyme in both Streptomyces coelicolor CH999 and Escherichia coli BAP1. The yield of indigoidine in E. coli BAP1 reached 2.78 g/l under the optimized conditions. The predicted protein product of Sc-indB is unusual and much larger than any other reported IndB-like protein. The N-terminal portion of this enzyme resembles IdgB and the C-terminal portion is a hypothetical protein. Sc-IndA and/or Sc-IndB were co-expressed with Sc-IndC in E. coli BAP1, which demonstrated the involvement of Sc-IndB, but not Sc-IndA, in the biosynthetic pathway of indigoidine. The yield of indigoidine was dramatically increased by 41.4 % (3.93 g/l) when Sc-IndB was co-expressed with Sc-IndC in E. coli BAP1. Indigoidine is more stable at low temperatures.


Indigoidine Streptomyces chromofuscus Sc-IndC Sc-IndB Heterologous expression Blue pigment 



Polyketide synthase


Non-ribosomal peptide synthetase


4′-Phosphopantetheinyl transferase


Low-density lipoprotein receptor


Open reading frame


American Type Culture Collection


Polymerase chain reaction












Dimethyl sulfoxide



This work was supported by a National Scientist Development Grant (09SDG2060080) from the American Heart Association and a grant from the National Natural Science Foundation of China (31170763). We thank Dr. Chaitan Khosla, Stanford University for kindly providing S. coelicolor CH999 and E. coli BAP1.

Supplementary material

10295_2012_1207_MOESM1_ESM.docx (997 kb)
Supplementary material 1 (DOCX 997 kb)


  1. 1.
    Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCrossRefGoogle Scholar
  2. 2.
    Bibb MJ (2005) Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215PubMedCrossRefGoogle Scholar
  3. 3.
    Brachmann AO, Kirchner F, Kegler C, Kinski SC, Schmitt I, Bode HB (2012) Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. J Biotechnol 157:96–99PubMedCrossRefGoogle Scholar
  4. 4.
    Chu M-K, Lin L-F, Twu C-S, Lin R-H, Lin Y-C, Hsu S-T, Tzeng K-C, Huang H-C (2010) Unique features of Erwinia chrysanthemi (Dickeya dadantii) RA3B genes involved in the blue indigoidine production. Microbiol Res 165:483–495PubMedCrossRefGoogle Scholar
  5. 5.
    Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, May AL, Buchan A (2012) Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 78:4771–4780PubMedCrossRefGoogle Scholar
  6. 6.
    Hu Z, Hopwood DA, Hutchinson CR (2003) Enhanced heterologous polyketide production in Streptomyces by exploiting plasmid co-integration. J Ind Microbiol Biotechnol 30:516–522PubMedCrossRefGoogle Scholar
  7. 7.
    Ishikawa J, Hotta K (1999) FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 174:251–253PubMedCrossRefGoogle Scholar
  8. 8.
    Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, NorwichGoogle Scholar
  9. 9.
    Kobayashi H, Nogi Y, Horikoshi K (2007) New violet 3,3′-bipyridyl pigment purified from deep-sea microorganism Shewanella violacea DSS12. Extremophiles 11:245–250PubMedCrossRefGoogle Scholar
  10. 10.
    Koguchi Y, Nishio M, Kotera J, Omori K, Ohnuki T, Komatsubara S (1997) Trichostatin A and herboxidiene up-regulate the gene expression of low-density lipoprotein receptor. J Antibiot 50:970–971PubMedCrossRefGoogle Scholar
  11. 11.
    Kuhn R, Bauer H, Knackmuss HJ (1965) Structure and synthesis of the bacterial dye indigoidine. Chem Ber 98:2139–2153PubMedCrossRefGoogle Scholar
  12. 12.
    Kuhn R, Starr MP, Kuhn DA, Bauer H, Knackmuss HJ (1965) Indigoidine and other bacterial pigments related to 3,3′-bipyridine. Arch Mikrobiol 51:71–84PubMedCrossRefGoogle Scholar
  13. 13.
    Miller-Wideman M, Makkar N, Tran M, Isaac B, Biest N, Stonard R (1992) Herboxidiene, a new herbicidal substance from Streptomyces chromofuscus A7847—taxonomy, fermentation, isolation, physicochemical and biological properties. J Antibiot 45:914–921PubMedCrossRefGoogle Scholar
  14. 14.
    Muller M, Auslander S, Auslander D, Kemmer C, Fussenegger M (2012) A novel reporter system for bacterial and mammalian cells based on the non-ribosomal peptide indigoidine. Metab Eng 14:325–335PubMedCrossRefGoogle Scholar
  15. 15.
    Novakova R, Odnogova Z, Kutas P, Feckova L, Kormanec J (2010) Identification and characterization of an indigoidine-like gene for a blue pigment biosynthesis in Streptomyces aureofaciens CCM 3239. Folia Microbiol 55:119–125CrossRefGoogle Scholar
  16. 16.
    Oja T, Palmu K, Lehmussola H, Lepparanta O, Hannikainen K, Niemi J, Mantsala P, Metsa-Ketela M (2008) Characterization of the alnumycin gene cluster reveals unusual gene products for pyran ring formation and dioxan biosynthesis. Chem Biol 15:1046–1057PubMedCrossRefGoogle Scholar
  17. 17.
    Owen JG, Copp JN, Ackerley DF (2011) Rapid and flexible biochemical assays for evaluating 4′-phosphopantetheinyl transferase activity. Biochem J 436:709–717PubMedCrossRefGoogle Scholar
  18. 18.
    Pfeifer BA, Admiraal S, Gramajo H, Cane D, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792PubMedCrossRefGoogle Scholar
  19. 19.
    Reverchon S, Rouanet C, Expert D, Nasser W (2002) Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol 184:654–665PubMedCrossRefGoogle Scholar
  20. 20.
    Shao L, Zi J, Zeng J, Zhan J (2012) Identification of the herboxidiene biosynthetic gene cluster in Streptomyces chromofuscus ATCC 49982. Appl Environ Microbiol 78:2034–2038PubMedCrossRefGoogle Scholar
  21. 21.
    Starr MP, Cosens G, Knackmuss HJ (1966) Formation of the blue pigment indigoidine by phytopathogenic Erwinia. Appl Microbiol 14:870–872PubMedGoogle Scholar
  22. 22.
    Takahashi H, Kumagai T, Kitani K, Mori M, Matoba Y, Sugiyama M (2007) Cloning and characterization of a Streptomyces single module type non-ribosomal peptide synthetase catalyzing a blue pigment synthesis. J Biol Chem 282:9073–9081PubMedCrossRefGoogle Scholar
  23. 23.
    Walsh CT, Gehring AM, Weinreb PH, Quadri LE, Flugel RS (1997) Post-translational modification of polyketide and nonribosomal peptide synthases. Curr Opin Chem Biol 1:309–315PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  • Dayu Yu
    • 1
    • 2
  • Fuchao Xu
    • 1
    • 2
  • Jonathan Valiente
    • 2
  • Siyuan Wang
    • 2
  • Jixun Zhan
    • 2
    Email author
  1. 1.Department of Applied Chemistry and Biological Engineering, College of Chemical EngineeringNortheast Dianli UniversityJilinChina
  2. 2.Department of Biological EngineeringUtah State UniversityLoganUSA

Personalised recommendations