Journal of Industrial Microbiology & Biotechnology

, Volume 39, Issue 12, pp 1771–1778 | Cite as

Enzymatic production and in situ separation of natural β-ionone from β-carotene

  • Christoph Nacke
  • Sonja Hüttmann
  • Maria M. W. Etschmann
  • Jens Schrader
Biocatalysis

Abstract

A biotechnological process concept for generation and in situ separation of natural β-ionone from β-carotene is presented. The process employs carotenoid cleavage dioxygenases (CCDs), a plant-derived iron-containing nonheme enzyme family requiring only dissolved oxygen as cosubstrate and no additional cofactors. Organophilic pervaporation was found to be very well suited for continuous in situ separation of β-ionone. Its application led to a highly pure product despite the complexity of the reaction solution containing cell homogenates. Among three different pervaporation membrane types tested, a polyoctylmethylsiloxane active layer on a porous polyetherimide support led to the best results. A laboratory-scale demonstration plant was set up, and a highly pure aqueous–ethanolic solution of β-ionone was produced from β-carotene. The described process permits generation of high-value flavor and fragrance compounds bearing the desired label “natural” according to US and European food and safety regulations and demonstrates the potential of CCD enzymes for selective oxidative cleavage of carotenoids.

Keywords

Dioxygenase Organophilic pervaporation β-Ionone Flavor Carotenoid 

Supplementary material

10295_2012_1182_MOESM1_ESM.pdf (191 kb)
Supplementary material 1 (PDF 190 kb)

References

  1. 1.
    Auldridge ME, McCarty DR, Klee HJ (2006) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321PubMedCrossRefGoogle Scholar
  2. 2.
    Berger R (2009) Biotechnology of flavours—the next generation. Biotechnol Lett 31:1651–1659PubMedCrossRefGoogle Scholar
  3. 3.
    Bluemke W, Schrader J (2001) Integrated bioprocess for enhanced production of natural flavors and fragrances by Ceratocystis moniliformis. Biomol Eng 17:137–142PubMedCrossRefGoogle Scholar
  4. 4.
    Bowen TC, Noble RD, Falconer JL (2004) Fundamentals and applications of pervaporation through zeolite membranes. J Membr Sci 245:1–33CrossRefGoogle Scholar
  5. 5.
    Etschmann MM, Sell D, Schrader J (2005) Production of 2-phenylethanol and 2-phenylethylacetate from l-phenylalanine by coupling whole-cell biocatalysis with organophilic pervaporation. Biotechnol Bioeng 92:624–634PubMedCrossRefGoogle Scholar
  6. 6.
    Floss DS, Walter MH (2009) Role of carotenoid cleavage dioxygenase 1 (CCD1) in apocarotenoid biogenesis revisited. Plant Signal Behav 4:172–175PubMedCrossRefGoogle Scholar
  7. 7.
    Hausmanns S (1999) Organophile Pervaporation wäßriger Mehrkomponentensysteme. VDI Verlag, DusseldorfGoogle Scholar
  8. 8.
    Hoshino K, Sakurai K (2002) Perfume composition for laundry detergent. Patent no.: 9/866,606Google Scholar
  9. 9.
    Huang RYM, Feng X (1992) Pervaporation of water/ethanol mixtures by an aromatic polyetherimide membrane. Sep Sci Technol 27:1583–1597CrossRefGoogle Scholar
  10. 10.
    Lipnizki F, Hausmanns S, Laufenberg G, Field R, Kunz B (2000) Use of pervaporation-bioreactor hybrid processes in biotechnology. Chem Eng Technol 23:569–577CrossRefGoogle Scholar
  11. 11.
    Michael DW (1990) Powdered abrasive cleansers with encapsulated parfume. Patent no.: 436274Google Scholar
  12. 12.
    Nacke C, Schrader J (2011) Liposome based solubilisation of carotenoid substrates for enzymatic conversion in aqueous media. J Mol Catal B Enzym 71:133–138CrossRefGoogle Scholar
  13. 13.
    Nacke C, Schrader J (2012) Micelle based delivery of carotenoid substrates for enzymatic conversion in aqueous media. J Mol Catal B Enzym 77:67–73CrossRefGoogle Scholar
  14. 14.
    Ohmiya A (2009) Carotenoid cleavage dioxygenases and their apocarotenoid products in plants. Plant Biotechnol 26:351–358CrossRefGoogle Scholar
  15. 15.
    Pereira CC, Ribeiro CP, Nobrega R, Borges CP (2006) Pervaporative recovery of volatile aroma compounds from fruit juices. J Membr Sci 274:1–23CrossRefGoogle Scholar
  16. 16.
    Schäfer T, Heintz A, Crespo JG (2005) Sorption of aroma compounds in poly(octylmethylsiloxane) (POMS). J Membr Sci 254:259–265CrossRefGoogle Scholar
  17. 17.
    Schilling M, Patett F, Schwab W, Schrader J (2007) Influence of solubility-enhancing fusion proteins and organic solvents on the in vitro biocatalytic performance of the carotenoid cleavage dioxygenase AtCCD1 in a micellar reaction system. Appl Microbiol Biotechnol 75:829–836PubMedCrossRefGoogle Scholar
  18. 18.
    Schilling M (2008) Gewinnung von Aromastoffen durch enzymatische Spaltung von Carotinoiden mit der rekombinanten Dioxygenase AtCCD1. Technical University of Munich, MunichGoogle Scholar
  19. 19.
    Schmidt H, Kurtzer R, Eisenreich W, Schwab W (2006) The carotenase AtCCD1 from Arabidopsis thaliana is a dioxygenase. J Biol Chem 281:9845–9851PubMedCrossRefGoogle Scholar
  20. 20.
    Schwartz SH, Qin X, Zeevaart JA (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211PubMedCrossRefGoogle Scholar
  21. 21.
    Verhoef A, Figoli A, Leen B, Bettens B, Drioli E, Van der Bruggen B (2008) Performance of a nanofiltration membrane for removal of ethanol from aqueous solutions by pervaporation. Sep Purif Technol 60:54–63CrossRefGoogle Scholar
  22. 22.
    Winterhalter P, Rouseff R (2002) Carotenoid-derived aroma compounds: an introduction In: Winterhalter P, Rouseff R (eds) ACS Symposium Series American Chemical Society. Washington, USA, pp 1–17Google Scholar
  23. 23.
    Wu Z, Robinson DS (1999) Co-oxidation of beta-carotene catalyzed by soybean and recombinant pea lipoxygenase. J Agric Food Chem 47:4899–4906PubMedCrossRefGoogle Scholar
  24. 24.
    Zorn H, Langhoff S, Schreibner M, Nimtz M, Berger RG (2003) A peroxidase from Lepista irina cleaves b-carotene to flavor compounds. Biol Chem 384:1049–1056PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  • Christoph Nacke
    • 1
  • Sonja Hüttmann
    • 1
  • Maria M. W. Etschmann
    • 1
  • Jens Schrader
    • 1
  1. 1.DECHEMA Research InstituteBiochemical EngineeringFrankfurtGermany

Personalised recommendations