Journal of Industrial Microbiology & Biotechnology

, Volume 39, Issue 11, pp 1597–1604 | Cite as

Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae

  • Kimberly A. Aeling
  • Kirsty A. Salmon
  • José M. Laplaza
  • Ling Li
  • Jennifer R. Headman
  • Alex H. Hutagalung
  • Stephen Picataggio
Bioenergy/Biofuels/Biochemicals

Abstract

We have integrated and coordinately expressed in Saccharomyces cerevisiae a xylose isomerase and cellobiose phosphorylase from Ruminococcus flavefaciens that enables fermentation of glucose, xylose, and cellobiose under completely anaerobic conditions. The native xylose isomerase was active in cell-free extracts from yeast transformants containing a single integrated copy of the gene. We improved the activity of the enzyme and its affinity for xylose by modifications to the 5′-end of the gene, site-directed mutagenesis, and codon optimization. The improved enzyme, designated RfCO*, demonstrated a 4.8-fold increase in activity compared to the native xylose isomerase, with a Km for xylose of 66.7 mM and a specific activity of 1.41 μmol/min/mg. In comparison, the native xylose isomerase was found to have a Km for xylose of 117.1 mM and a specific activity of 0.29 μmol/min/mg. The coordinate over-expression of RfCO* along with cellobiose phosphorylase, cellobiose transporters, the endogenous genes GAL2 and XKS1, and disruption of the native PHO13 and GRE3 genes allowed the fermentation of glucose, xylose, and cellobiose under completely anaerobic conditions. Interestingly, this strain was unable to utilize xylose or cellobiose as a sole carbon source for growth under anaerobic conditions, thus minimizing yield loss to biomass formation and maximizing ethanol yield during their fermentation.

Keywords

Saccharomyces cerevisiae Xylose isomerase Cellobiose phosphorylase Yeast fermentation Cellulosic ethanol 

Notes

Acknowledgments

All authors have agreed to submit this manuscript to the “Journal of Industrial Microbiology and Biotechnology”. The authors would like to thank the following people for providing assistance to the work presented in this manuscript: Malcolm Robertson, Jessica Long, Binh Phung, Doug Decker, Aran Gregorian, June Hoang, Moe Abouzari, Jessica Greiner, Pierre-Yves De Wals, and Elaine Ito.

References

  1. 1.
    Agblevor FA, Hames BR, Schell D, Chum HL (2007) Analysis of biomass sugars using a novel HPLC method. Appl Biochem Biotechnol 136(3):309–326PubMedCrossRefGoogle Scholar
  2. 2.
    Alani E, Cao L, Kleckner N (1987) A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545PubMedGoogle Scholar
  3. 3.
    Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF (2009) Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 2:9PubMedCrossRefGoogle Scholar
  4. 4.
    Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75(8):2304–2311PubMedCrossRefGoogle Scholar
  5. 5.
    Fujitomi K, Sanda T, Hasunuma T, Kondo A (2012) Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 111:161–166PubMedCrossRefGoogle Scholar
  6. 6.
    Gárdonyi M, Hahn-Hägerdal B (2003) The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzym Microb Technol 32(2):252–259CrossRefGoogle Scholar
  7. 7.
    Ha SJ, Galazka JM, Kim SR, Choi JH, Yang X, Seo JH, Glass NL, Cate JH, Jin YS (2011) Engineered Saccharomyces cerevisiae capable of simultaneous cellobiose and xylose fermentation. Proc Natl Acad Sci 108(2):504–509PubMedCrossRefGoogle Scholar
  8. 8.
    Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148(Pt 9):2783–2788PubMedGoogle Scholar
  9. 9.
    Hasunuma T, Sung KM, Sanda T, Yoshimura K, Matsuda F, Kondo A (2011) Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90(3):997–1004PubMedCrossRefGoogle Scholar
  10. 10.
    Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedGoogle Scholar
  11. 11.
    Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5PubMedCrossRefGoogle Scholar
  12. 12.
    Katahira S, Mizuike A, Fukuda H, Kondo A (2006) Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72(6):1136–1143PubMedCrossRefGoogle Scholar
  13. 13.
    Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18(6):493–500PubMedCrossRefGoogle Scholar
  14. 14.
    Kuhn A, van Zyl C, van Tonder A, Prior BA (1995) Purification and partial characterization of an aldo-keto reductase from Saccharomyces cerevisiae. Appl Environ Microbiol 61(4):1580–1585PubMedGoogle Scholar
  15. 15.
    Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4(1):69–78PubMedCrossRefGoogle Scholar
  16. 16.
    Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5(4–5):399–409PubMedCrossRefGoogle Scholar
  17. 17.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2. Bioinformatics 23(21):2947–2948PubMedCrossRefGoogle Scholar
  18. 18.
    Lee FW, Da Silva NA (1997) Sequential delta-integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol Prog 13(4):368–373PubMedCrossRefGoogle Scholar
  19. 19.
    Lee SM, Jellison T, Alper HS (2012) Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol (Epub)Google Scholar
  20. 20.
    Li S, Du J, Sun J, Galazka JM, Glass NL, Cate JH, Yang X, Zhao H (2010) Overcoming glucose repression in mixed sugar fermentation by co-expressing a cellobiose transporter and a β-glucosidase in Saccharomyces cerevisiae. Mol BioSyst 6(11):2129–2132PubMedCrossRefGoogle Scholar
  21. 21.
    Ma TY, Lin TH, Hsu TC, Huang CF, Guo GL, Hwang WS (2012) An improved method of xylose utilization by recombinant Saccharomyces cerevisiae. J Ind Microbiol Biotechnol (Epub)Google Scholar
  22. 22.
    Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82(6):1067–1078PubMedCrossRefGoogle Scholar
  23. 23.
    Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349PubMedCrossRefGoogle Scholar
  24. 24.
    Nakamura N, Yamada R, Katahirab S, Tanakac T, Fukudac H, Kondo A (2008) Effective xylose/cellobiose co-fermentation and ethanol production by xylose-assimilating S. cerevisiae via expression of β-glucosidase on its cell surface. Enzym Microb Technol 43(3):233–236CrossRefGoogle Scholar
  25. 25.
    Ni H, Laplaza JM, Jeffries TW (2007) Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73(7):2061–2066PubMedCrossRefGoogle Scholar
  26. 26.
    Parachin NS, Bergdahl B, van Niel EW, Gorwa-Grauslund MF (2011) Kinetic modeling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab Eng 5:508–517CrossRefGoogle Scholar
  27. 27.
    Puigbo P, Bravo IG, Garcia-Vallve S (2008) CAIcal: a combined set of tools to assess codon usage adaptation. Biol Direct 3:38PubMedCrossRefGoogle Scholar
  28. 28.
    Raynal A, Guerineau M (1984) Cloning and expression of the structural gene for beta-glucosidase of Kluyveromyces fragilis in Escherichia coli and Saccharomyces cerevisiae. Mol Gen Genet 195(1–2):108–115PubMedCrossRefGoogle Scholar
  29. 29.
    Sadie CJ, Rose SH, den Haan R, van Zyl WH (2011) Co-expression of a cellobiose phosphorylase and lactose permease enables intracellular cellobiose utilisation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 90(4):1373–1380PubMedCrossRefGoogle Scholar
  30. 30.
    Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000PubMedGoogle Scholar
  31. 31.
    Sedlak M, Ho NW (2004) Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast 21(8):671–684PubMedCrossRefGoogle Scholar
  32. 32.
    Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U (2004) Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 70(4):2307–2317PubMedCrossRefGoogle Scholar
  33. 33.
    Subtil T, Boles E (2012) Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels 5:14PubMedCrossRefGoogle Scholar
  34. 34.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  35. 35.
    Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, Ogino C, Ohmura N, Ohshima T, Kondo A (2010) Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol 88(5):1215–1221PubMedCrossRefGoogle Scholar
  36. 36.
    Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249PubMedCrossRefGoogle Scholar
  37. 37.
    Toivari MH, Nygård Y, Kumpula EP, Vehkomäki ML, Benčina M, Valkonen M, Maaheimo H, Andberg M, Koivula A, Ruohonen L, Penttilä M, Wiebe MG (2012) Metabolic engineering of Saccharomyces cerevisiae for bioconversion of d-xylose to d-xylonate. Metab Eng 14(4):427–436PubMedCrossRefGoogle Scholar
  38. 38.
    Träff KL, Otero Cordero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67(12):5668–5674PubMedCrossRefGoogle Scholar
  39. 39.
    Treco DA, Lundblad V (2008) Basic techniques of yeast genetics. Curr Protoc Mol Biol Suppl 82:13.0.1–132.12Google Scholar
  40. 40.
    Van Vleet JH, Jeffries TW, Olsson L (2008) Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab Eng 10(6):360–369PubMedCrossRefGoogle Scholar
  41. 41.
    Walfridsson M, Hallborn J, Penttilä M, KerDnen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentosephosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  • Kimberly A. Aeling
    • 1
  • Kirsty A. Salmon
    • 2
  • José M. Laplaza
    • 1
  • Ling Li
    • 2
  • Jennifer R. Headman
    • 1
  • Alex H. Hutagalung
    • 1
  • Stephen Picataggio
    • 1
  1. 1.VerdezyneCarlsbadUSA
  2. 2.BP BiofuelsSan DiegoUSA

Personalised recommendations