Improved trehalose production from biodiesel waste using parent and osmotically sensitive mutant of Propionibacterium freudenreichii subsp. shermanii under aerobic conditions



Trehalose is an important nutraceutical of wide commercial interest in the food processing industry. Recently, crude glycerol was reported to be suitable for the production of trehalose using a food microbe, Propionibacterium freudenreichii subsp. shermanii, under static flask conditions. Similarly, enhanced trehalose yield was reported in an osmotically sensitive mutant of the same strain under anaerobic conditions. In the present study, an effort was made to achieve higher production of trehalose, propionic acid, and lactic acid using the parent and an osmotically sensitive mutant of P. freudenreichii subsp. shermanii under aeration conditions. Under aeration conditions (200 rpm in shake flasks and 30 % air saturation in a batch reactor), biomass was increased and approximately 98 % of crude glycerol was consumed. In the parent strain, a trehalose titre of 361 mg/l was achieved, whereas in the mutant strain a trehalose titre of 1.3 g/l was produced in shake flask conditions (200 rpm). In the mutant strain, propionic and lactic acid yields of 0.53 and 0.21 g/g of substrate were also achieved with crude glycerol. Similarly, in controlled batch reactor culturing conditions a final trehalose titre of approximately 1.56 g/l was achieved with the mutant strain using crude glycerol as the substrate. Enhanced production of trehalose using P. freudenreichii subsp. shermanii from waste under aeration conditions is reported here. Higher production of trehalose was not due to a higher yield of trehalose but to a higher final biomass concentration.


Trehalose Osmotically sensitive mutant Propionibacterium freudenreichii Crude glycerol Aeration Biodiesel 



Trehalose yield with respect to biomass


Trehalose yield with respect to substrate consumed



This work was supported by the Department of Biotechnology (DBT), Government of India, with grant no. BT/PR-7493/PID/20/289/2006.


  1. 1.
    Argüelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224PubMedCrossRefGoogle Scholar
  2. 2.
    Bondioli PL, Bella D (2005) An alternative spectrophotometrically method for the determination of free glycerol in biodiesel. Eur J Lipid Sci Technol 107:153–157CrossRefGoogle Scholar
  3. 3.
    Cardoso FS, Castro RF, Borges N, Santos H (2007) Biochemical and genetic characterization of the pathways for trehalose metabolism in Propionibacterium freudenreichii, and their role in stress response. Microbiology 153:270–280PubMedCrossRefGoogle Scholar
  4. 4.
    Cardoso FS, Gaspar P, Hugenholtz J, Ramos A, Santos H (2004) Enhancement of trehalose production in dairy propionibacteria through manipulation of environmental conditions. Int J Food Microbiol 91:195–204PubMedCrossRefGoogle Scholar
  5. 5.
    Carpinelli J, Krämer R, Agosin E (2006) Metabolic engineering of Corynebacterium glutamicum for trehalose overproduction: role of the TreYZ trehalose biosynthetic pathway. Appl Environ Microbiol 72:1949–1955PubMedCrossRefGoogle Scholar
  6. 6.
    Carvalho AL, Cardoso FS, Bohn A, Neves AR, Santos H (2011) Engineering trehalose synthesis in Lactococcus lactis for improved stress tolerance. Appl Environ Microbiol 77(12):4189–4199PubMedCrossRefGoogle Scholar
  7. 7.
    Chi Z, Wang JM, Chi ZM, Ye F (2010) Trehalose accumulation from corn starch by Saccharomycopsis fibuligera A11 during 2-l fermentation and trehalose purification. J Ind Microbiol Biotechnol 37(1):19–25PubMedCrossRefGoogle Scholar
  8. 8.
    De Vries W, Wijck-Kapteijn W, Stouthamer AH (1972) Influence of oxygen on growth, cytochrome synthesis and fermentation pattern in propionic acid bacteria. J Gen Microbiol 71:515–524PubMedCrossRefGoogle Scholar
  9. 9.
    Elbein AD, Pan YT, Pastuszak I, Carrol D (2003) New insights on trehalose molecule: a multifunctional role. Glycobiology 13:17–27CrossRefGoogle Scholar
  10. 10.
    Ethier S, Woisard K, Vaughan D, Wen Z (2011) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol 102:88–93PubMedCrossRefGoogle Scholar
  11. 11.
    Falentin H, Deutsch SM, Jan G, Loux V, Thierry A, Parayre S, Maillard MB, Dherbecourt J, Cousin FJ, Jardin J, Siguier P, Couloux A, Barbe V, Vacherie B, Wincker P, Gibrat JF, Gaillardin C, Lortal S (2010) The complete genome of Propionibacterium freudenreichii CIRM-BIA1, a hardy actinobacterium with food and probiotic applications. PLoS ONE 5(7):e11748PubMedCrossRefGoogle Scholar
  12. 12.
    Feng X, Chen F, Xu H, Wu B, Li H, Li S, Ouyang P (2011) Green and economical production of propionic acid by Propionibacterium freudenreichii CCTCC M207015 in plant fibrous-bed bioreactor. Bioresour Technol 102(10):6141–6146PubMedCrossRefGoogle Scholar
  13. 13.
    Fonseca de Fariaa A, Teodoro-Martinez DS, de Oliveira Barbosaa GN, Vaz BG, Silva IS, Garcia JS, Totolac MR, Eberlinb MN, Grossmand M, Alvesb OL, Durranta LR (2011) Production and structural characterization of surfactin (C14/Leu7) produced by Bacillus subtilis isolate LSFM-05 grown on raw glycerol from the biodiesel industry. Process Biochem 46:1951–1957CrossRefGoogle Scholar
  14. 14.
    Furuichi K, Hojo K, Katakura Y, Ninomiya K, Shioya S (2006) Aerobic culture of P. freudenreichii ET-3 can increase production ratio of 1,4-dihydroxy-2-naphthoic acid to menaquinone. J Biosci Bioeng 101(6):464–470PubMedCrossRefGoogle Scholar
  15. 15.
    Higashiyama T (2002) Novel functions and applications of trehalose. Pure Appl Chem 74(7):1263–1269CrossRefGoogle Scholar
  16. 16.
    Himmi EH, Bories A, Barbirato F (1999) Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresour Technol 67(2):123–128CrossRefGoogle Scholar
  17. 17.
    Hiremath A, Kannabiran M, Rangaswamy V (2011) 1,3-Propanediol production from crude glycerol from jatropha biodiesel process. New Biotechnol 28:19–23CrossRefGoogle Scholar
  18. 18.
    Hugenholtz J, Hunik J, Santos H, Smid E (2002) Nutraceutical production by Propionibacterium. Lait 82:103–112CrossRefGoogle Scholar
  19. 19.
    Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N (2005) Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J Biosci Bioeng 100(3):260–265PubMedCrossRefGoogle Scholar
  20. 20.
    Jin Y, Wang M, Lin S, Guo Y, Liu J, Yin Y (2011) Optimization of extraction parameters for trehalose from beer waste brewing yeast treated by high-intensity pulsed electric fields (PEF). Afr J Biotechnol 10(82):19144–19152Google Scholar
  21. 21.
    Kidd G, Devorak J (1994) Trehalose is a sweet target for agrobiotech. Biotechnology 12(13):1328–1329Google Scholar
  22. 22.
    Kosmider A, Bialas W, Kubiak P, Drozdzynska A, Czaczyk K (2012) Vitamin B (12) production from crude glycerol by Propionibacterium freudenreichii ssp. shermanii: optimization of medium composition through statistical experimental designs. Bioresour Technol 105:128–133PubMedCrossRefGoogle Scholar
  23. 23.
    Kroger M, Meister K, Kava R (2006) Low-calorie sweeteners and other sugar substitutes: a review of the safety issues. Compr Rev Food Sci Food Saf 5:35–47CrossRefGoogle Scholar
  24. 24.
    Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon. Biotechnol Bioeng 72(1):41–48PubMedCrossRefGoogle Scholar
  25. 25.
    Li H, Su, H, Kim SB, Chang YK, Hong S-K, Seo YG, Kim CJ (2011) Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity. J Biosci Bioeng. doi: 10.1016/j.jbiosc.2011.09.018
  26. 26.
    Lind H, Broberg A, Jacobsson K, Jonsson H, Schnurer J (2010) Glycerol enhances the antifungal activity of dairy propionibacteria. Int J Microbiol. doi: 10.1155/2010/430873
  27. 27.
    Maruta K, Mitsuzumi H, Nakada T, Kubota M, Chaen H, Fukuda S, Sugimoto T, Kurimoto M (1996) Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim Biophys Acta 1291:177–181PubMedCrossRefGoogle Scholar
  28. 28.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  29. 29.
    Oh B-R, Seo J-W, Heo S-Y, Hong W-K, Luo L-H, Joe M-H, Park D-H, Kim CH (2011) Efficient production of ethanol from crude glycerol by a Klebsiella pneumonia mutant strain. Bioresour Technol 102:3918–3922PubMedCrossRefGoogle Scholar
  30. 30.
    Pyle DJ, Garcia AR, Wen Z (2008) Producing docosahexanoic acid (DHA)-rich algae from biodiesel derived glycerol effects of impurities on DHA production and algal biomass composition. J Agric Food Chem 56:3933–3939PubMedCrossRefGoogle Scholar
  31. 31.
    Quesada-Chanto A, Schmid-Meyer AC, Schroeder AG, Carvalho-Jonas MF, Blanco I, Jonas R (1998) Effect of oxygen supply on biomass, organic acids and vitamin B12 production by Propionibacterium shermanii. World J Microbiol Biotechnol 14:843–846CrossRefGoogle Scholar
  32. 32.
    Ruhal R, Aggarwal S, Choudhury B (2011) Suitability of crude glycerol obtained from biodiesel waste for the productions of trehalose and propionic acid. Green Chem 13:3492–3498CrossRefGoogle Scholar
  33. 33.
    Ruhal R, Choudhury B (2012) Use of osmotically sensitive mutant of Propionibacterium freudenreichii subspp. shermanii for the simultaneous productions of organic acids and trehalose from biodiesel waste based crude glycerol. Bioresour Technol. doi: 10.1016/j.biortech.2012.01.039
  34. 34.
    Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production exploiting novel approaches. Trends Biotechnol 20:420–425PubMedCrossRefGoogle Scholar
  35. 35.
    Thierry A, Deutsch SM, Falentin H, Dalmasso M, Cousin FJ, Jan G (2011) New insights into physiology and metabolism of Propionibacterium freudenreichii. Int J Food Microbiol 149:19–27PubMedCrossRefGoogle Scholar
  36. 36.
    Wang D-S, Zhao S-F, Li J, Chi Z-M (2011) Trehalose accumulation from cassava starch and release by a highly thermosensitive and permeable mutant of Saccharomycopsis fibuligera. J Ind Microbiol Biotechnol 38:1545–1552PubMedCrossRefGoogle Scholar
  37. 37.
    Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  1. 1.Bioprocess Engineering Laboratory, Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations