Industrial production of recombinant therapeutics in Escherichia coli and its recent advancements

  • Chung-Jr HuangEmail author
  • Henry Lin
  • Xiaoming YangEmail author


Nearly 30% of currently approved recombinant therapeutic proteins are produced in Escherichia coli. Due to its well-characterized genetics, rapid growth and high-yield production, E. coli has been a preferred choice and a workhorse for expression of non-glycosylated proteins in the biotech industry. There is a wealth of knowledge and comprehensive tools for E. coli systems, such as expression vectors, production strains, protein folding and fermentation technologies, that are well tailored for industrial applications. Advancement of the systems continues to meet the current industry needs, which are best illustrated by the recent drug approval of E. coli produced antibody fragments and Fc-fusion proteins by the FDA. Even more, recent progress in expression of complex proteins such as full-length aglycosylated antibodies, novel strain engineering, bacterial N-glycosylation and cell-free systems further suggests that complex proteins and humanized glycoproteins may be produced in E. coli in large quantities. This review summarizes the current technology used for commercial production of recombinant therapeutics in E. coli and recent advances that can potentially expand the use of this system toward more sophisticated protein therapeutics.


Escherichia coli Recombinant therapeutics production Aglycosylated antibody E. coli N-linked glycosylation Cell-free systems 



The authors thank Dr. Rohini Deshpande and Dr. Susan Richards for invaluable review of and suggestions for this work.


  1. 1.
    Alibolandi M, Mirzahoseini H, Abad MAK, Azami movahed M (2010) High level expression of human basic fibroblast growth factor in Escherichia coli: evaluating the effect of the GC content and rare codons within the first 13 codons. Afr J Biotechnol 9(16):2456–2462Google Scholar
  2. 2.
    Andersen DC, Reilly DE (2004) Production technologies for monoclonal antibodies and their fragments. Curr Opin Biotechnol 15(5):456–462PubMedCrossRefGoogle Scholar
  3. 3.
    Andrews B, Adari H, Hannig G, Lahue E, Gosselin M, Martin S, Ahmed A, Ford PJ, Hayman EG, Makrides SC (1996) A tightly regulated high level expression vector that utilizes a thermosensitive lac repressor: production of the human T cell receptor V beta 5.3 in Escherichia coli. Gene 182(1–2):101–109PubMedCrossRefGoogle Scholar
  4. 4.
    Babaeipour V, Shojaosadati SA, Robatjazi SM, Khalilzadeh R, Maghsoudi N (2007) Over-production of human interferon-gamma by HCDC of recombinant Escherichia coli. Process Biochem 42(1):112–117CrossRefGoogle Scholar
  5. 5.
    Backlund E, Reeks D, Markland K, Weir N, Bowering L, Larsson G (2008) Fedbatch design for periplasmic product retention in Escherichia coli. J Biotechnol 135(4):358–365PubMedCrossRefGoogle Scholar
  6. 6.
    Balbas P (2001) Understanding the art of producing protein and nonprotein molecules in Escherichia coli. Mol Biotechnol 19(3):251–267PubMedCrossRefGoogle Scholar
  7. 7.
    Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421PubMedCrossRefGoogle Scholar
  8. 8.
    Bessette PH, Aslund F, Beckwith J, Georgiou G (1999) Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci USA 96(24):13703–13708PubMedCrossRefGoogle Scholar
  9. 9.
    Calhoun KA, Swartz JR (2006) Total amino acid stabilization during cell-free protein synthesis reactions. J Biotechnol 123(2):193–203PubMedCrossRefGoogle Scholar
  10. 10.
    Caparon MH, Rust KJ, Hunter AK, McLaughlin JK, Thomas KE, Herberg JT, Shell RE, Lanter PB, Bishop BF, Dufield RL, Wang X, Ho SV (2010) Integrated solution to purification challenges in the manufacture of a soluble recombinant protein in E. coli. Biotechnol Bioeng 105(2):239–249PubMedCrossRefGoogle Scholar
  11. 11.
    Carnes AE, Hodgson CP, Williams JA (2006) Inducible Escherichia coli fermentation for increased plasmid DNA production. Biotechnol Appl Biochem 45(3):155–166PubMedCrossRefGoogle Scholar
  12. 12.
    Carrier TA, Keasling JD (1997) Controlling messenger RNA stability in bacteria: strategies for engineering gene expression. Biotechnol Prog 13(6):699–708PubMedCrossRefGoogle Scholar
  13. 13.
    Cascaval D, Galaction AI, Camarut S (2011) Scale-up of aerobic stirred bioreactors using the mixing time criteria 1. simulated broths. Chem Biochem Eng Q 25(1):43–54Google Scholar
  14. 14.
    Chen C, Snedecor B, Nishihara JC, Joly JC, McFarland N, Andersen DC, Battersby JE, Champion KM (2004) High-level accumulation of a recombinant antibody fragment in the periplasm of Escherichia coli requires a triple-mutant (degP prc spr) host strain. Biotechnol Bioeng 85(5):463–474PubMedCrossRefGoogle Scholar
  15. 15.
    Choi JH, Keum KC, Lee SY (2006) Production of recombinant proteins by high cell density culture of Escherichia coli. Chem Eng Sci 61(3):876–885CrossRefGoogle Scholar
  16. 16.
    Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64(5):625–635PubMedCrossRefGoogle Scholar
  17. 17.
    DeLisa MP, Tullman D, Georgiou G (2003) Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci USA 100(10):6115–6120PubMedCrossRefGoogle Scholar
  18. 18.
    Eiberle MK, Jungbauer A (2010) Technical refolding of proteins: do we have freedom to operate? Biotechnol J 5(6):547–559PubMedCrossRefGoogle Scholar
  19. 19.
    Eiteman MA, Altman E (2006) Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol 24(11):530–536PubMedCrossRefGoogle Scholar
  20. 20.
    Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jurgen B, Kruger E, Schweder T, Hamer G, O’Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Tragardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A (2001) Physiological responses to mixing in large scale bioreactors. J Biotechnol 85(2):175–185PubMedCrossRefGoogle Scholar
  21. 21.
    Fahnert B, Lilie H, Neubauer P (2004) Inclusion bodies: formation and utilisation. Adv Biochem Eng Biotechnol 89:93–142PubMedGoogle Scholar
  22. 22.
    Fang Z (2010) Applying computational fluid dynamics technology in bioprocesses. Biopharm Int 23(4):38Google Scholar
  23. 23.
    Feldman MF, Wacker M, Hernandez M, Hitchen PG, Marolda CL, Kowarik M, Morris HR, Dell A, Valvano MA, Aebi M (2005) Engineering N-linked protein glycosylation with diverse O antigen lipopolysaccharide structures in Escherichia coli. Proc Natl Acad Sci USA 102(8):3016–3021PubMedCrossRefGoogle Scholar
  24. 24.
    Fernandez LA, Sola I, Enjuanes L, de Lorenzo V (2000) Specific secretion of active single-chain Fv antibodies into the supernatants of Escherichia coli cultures by use of the hemolysin system. Appl Environ Microbiol 66(11):5024–5029PubMedCrossRefGoogle Scholar
  25. 25.
    Ferrer-Miralles N, Domingo-Espín J, Corchero J, Vázquez E, Villaverde A (2009) Microbial factories for recombinant pharmaceuticals. Microb Cell Fact 8(1):17PubMedCrossRefGoogle Scholar
  26. 26.
    Fisher AC, Haitjema CH, Guarino C, Celik E, Endicott CE, Reading CA, Merritt JH, Ptak AC, Zhang S, DeLisa MP (2011) Production of secretory and extracellular N-Linked glycoproteins in Escherichia coli. Appl Environ Microbiol 77(3):871–881PubMedCrossRefGoogle Scholar
  27. 27.
    Friehs K (2004) Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol 86:47–82PubMedGoogle Scholar
  28. 28.
    Furman TC, Epp J, Hsiung HM, Hoskins J, Long GL, Mendelsohn LG, Schoner B, Smith DP, Smith MC (1987) Recombinant human insulin-like growth factor-I expressed in Escherichia coli. Bio-Technology 5(10):1047–1051Google Scholar
  29. 29.
    Graumann K, Premstaller A (2006) Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1(2):164–186PubMedCrossRefGoogle Scholar
  30. 30.
    Gustafsson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22(7):346–353PubMedCrossRefGoogle Scholar
  31. 31.
    Gvritishvili AG, Leung KW, Tombran-Tink J (2010) Codon preference optimization increases heterologous PEDF expression. PLoS ONE 5(11):e15056PubMedCrossRefGoogle Scholar
  32. 32.
    Harrison JS, Keshavarz-Moore E (1996) Production of antibody fragments in Escherichia coli. Ann NY Acad Sci 782:143–158PubMedCrossRefGoogle Scholar
  33. 33.
    Huang CJ, Chen RH, Vannelli T, Lee F, Ritter E, Ritter G, Old LJ, Batt CA (2007) Expression and purification of the cancer antigen SSX2: a potential cancer vaccine. Protein Expr Purif 56(2):212–219PubMedCrossRefGoogle Scholar
  34. 34.
    Huang CJ, Lowe AJ, Batt CA (2010) Recombinant immunotherapeutics: current state and perspectives regarding the feasibility and market. Appl Microbiol Biotechnol 87(2):401–410PubMedCrossRefGoogle Scholar
  35. 35.
    Huang YS, Chen Z, Chen YQ, Ma GC, Shan JF, Liu W, Zhou LF (2008) Preparation and characterization of a novel exendin-4 human serum albumin fusion protein expressed in Pichia pastoris. J Pept Sci 14(5):588–595PubMedCrossRefGoogle Scholar
  36. 36.
    Islam RS, Tisi D, Levy MS, Lye GJ (2008) Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched kLa. Biotechnol Bioeng 99(5):1128–1139PubMedCrossRefGoogle Scholar
  37. 37.
    Ivanov AV, Korovina AN, Tunitskaya VL, Kostyuk DA, Rechinsky VO, Kukhanova MK, Kochetkov SN (2006) Development of the system ensuring a high-level expression of hepatitis C virus nonstructural NS5B and NS5A proteins. Protein Expr Purif 48(1):14–23PubMedCrossRefGoogle Scholar
  38. 38.
    Jana S, Deb JK (2005) Strategies for efficient production of heterologous proteins in Escherichia coli. Appl Microbiol Biotechnol 67(3):289–298PubMedCrossRefGoogle Scholar
  39. 39.
    Jensen EB, Carlsen S (1990) Production of recombinant human growth hormone in Escherichia coli: Expression of different precursors and physiological effects of glucose, acetate, and salts. Biotechnol Bioeng 36(1):1–11PubMedCrossRefGoogle Scholar
  40. 40.
    Jewett MC, Swartz JR (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol Bioeng 86(1):19–26PubMedCrossRefGoogle Scholar
  41. 41.
    Jiang XR, Song A, Bergelson S, Arroll T, Parekh B, May K, Chung S, Strouse R, Mire-Sluis A, Schenerman M (2011) Advances in the assessment and control of the effector functions of therapeutic antibodies. Nat Rev Drug Discov 10(2):101–110PubMedCrossRefGoogle Scholar
  42. 42.
    Jobe AM, Herwig C, Surzyn M, Walker B, Marison I, von Stockar U (2003) Generally applicable fed-batch culture concept based on the detection of metabolic state by on-line balancing. Biotechnol Bioeng 82(6):627–639PubMedCrossRefGoogle Scholar
  43. 43.
    Joly JC, Leung WS, Swartz JR (1998) Overexpression of Escherichia coli oxidoreductases increases recombinant insulin-like growth factor-I accumulation. Proc Natl Acad Sci USA 95(6):2773–2777PubMedCrossRefGoogle Scholar
  44. 44.
    Jong WSP, Saurí A, Luirink J (2010) Extracellular production of recombinant proteins using bacterial autotransporters. Curr Opin Biotechnol 21(5):646–652PubMedCrossRefGoogle Scholar
  45. 45.
    Jung ST, Kang TH, Kelton W, Georgiou G (2011) Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Curr Opin Biotechnol 22(6):858–867PubMedCrossRefGoogle Scholar
  46. 46.
    Jung ST, Reddy ST, Kang TH, Borrok MJ, Sandlie I, Tucker PW, Georgiou G (2010) Aglycosylated IgG variants expressed in bacteria that selectively bind Fc gamma RI potentiate tumor cell killing by monocyte-dendritic cells. Proc Natl Acad Sci USA 107(2):604–609PubMedCrossRefGoogle Scholar
  47. 47.
    Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng 97(6):347–364PubMedGoogle Scholar
  48. 48.
    Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12(2):268–274PubMedCrossRefGoogle Scholar
  49. 49.
    Kanemori M, Nishihara K, Yanagi H, Yura T (1997) Synergistic roles of HslVU and other ATP-dependent proteases in controlling in vivo turnover of sigma32 and abnormal proteins in Escherichia coli. J Bacteriol 179(23):7219–7225PubMedGoogle Scholar
  50. 50.
    Kim SG, Shin SY, Park YC, Shin CS, Seo JH (2011) Production and solid-phase refolding of human glucagon-like peptide-1 using recombinant Escherichia coli. Protein Expr Purif 78(2):197–203PubMedCrossRefGoogle Scholar
  51. 51.
    Kleman GL, Chalmers JJ, Luli GW, Strohl WR (1991) A predictive and feedback control algorithm maintains a constant glucose concentration in fed-batch fermentations. Appl Environ Microbiol 57(4):910–917PubMedGoogle Scholar
  52. 52.
    Knapp KG, Goerke AR, Swartz JR (2007) Cell-free synthesis of proteins that require disulfide bonds using glucose as an energy source. Biotechnol Bioeng 97(4):901–908PubMedCrossRefGoogle Scholar
  53. 53.
    Kolaj O, Spada S, Robin S, Wall JG (2009) Use of folding modulators to improve heterologous protein production in Escherichia coli. Microb Cell Fact 8:9PubMedCrossRefGoogle Scholar
  54. 54.
    Koo TY, Park TH (1999) Increased production of recombinant protein by Escherichia coli deficient in acetic acid formation. J Microbiol Biotechnol 9(6):789–793Google Scholar
  55. 55.
    Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N, Mills DC, Watson DC, Hernandez M, Kelly JF, Wacker M, Aebi M (2006) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25(9):1957–1966PubMedCrossRefGoogle Scholar
  56. 56.
    Labrijn AF, Aalberse RC, Schuurman J (2008) When binding is enough: nonactivating antibody formats. Curr Opin Immunol 20(4):479–485PubMedCrossRefGoogle Scholar
  57. 57.
    Lee SY (1996) High cell-density culture of Escherichia coli. Trends Biotechnol 14(3):98–105PubMedCrossRefGoogle Scholar
  58. 58.
    Levisauskas D (2001) Inferential control of the specific growth rate in fed-batch cultivation processes. Biotechnol Lett 23(15):1189–1195CrossRefGoogle Scholar
  59. 59.
    Liddell JM (2009) Production strategies for antibody fragment therapeutics. Biopharm Int Suppl 22(6):36–42Google Scholar
  60. 60.
    Lilie H, Schwarz E, Rudolph R (1998) Advances in refolding of proteins produced in E. coli. Curr Opin Biotechnol 5:497–501CrossRefGoogle Scholar
  61. 61.
    Liu DV, Zawada JF, Swartz JR (2005) Streamlining Escherichia coli S30 extract preparation for economical cell-free protein synthesis. Biotechnol Prog 21(2):460–465PubMedCrossRefGoogle Scholar
  62. 62.
    Lizak C, Fan YY, Weber TC, Aebi M (2011) N-Linked glycosylation of antibody fragments in Escherichia coli. Bioconjug Chem 22(3):488–496PubMedCrossRefGoogle Scholar
  63. 63.
    Lopez PJ, Marchand I, Joyce SA, Dreyfus M (1999) The C-terminal half of RNase E, which organizes the Escherichia coli degradosome, participates in mRNA degradation but not rRNA processing in vivo. Mol Microbiol 33(1):188–199PubMedCrossRefGoogle Scholar
  64. 64.
    Lowe AJ, Bardliving CL, Huang CJ, Teixeira LM, Damasceno LM, Anderson KA, Ritter G, Old LJ, Batt CA (2011) Expression and purification of cGMP grade NY-ESO-1 for clinical trials. Biotechnol Prog 27(2):435–441PubMedCrossRefGoogle Scholar
  65. 65.
    Luo Y, Fan DD, Ma XX, Wang DW, Mi Y, Hua XF, Li WH (2005) Process control for production of human-like collagen in fed-batch culture of Escherichia coli BL 21. Chin J Chem Eng 13(2):276–279Google Scholar
  66. 66.
    Maeng BH, Nam DH, Kim YH (2011) Coexpression of molecular chaperones to enhance functional expression of anti-BNP scFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J Microbiol Biotechnol 27(6):1391–1398CrossRefGoogle Scholar
  67. 67.
    Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512–538PubMedGoogle Scholar
  68. 68.
    Maurizi MR (1992) Proteases and protein-degradation in Escherichia coli. Experientia 48(2):178–201PubMedCrossRefGoogle Scholar
  69. 69.
    Mavrangelos C, Thiel M, Adamson PJ, Millard DJ, Nobbs S, Zola H, Nicholson IC (2001) Increased yield and activity of soluble single-chain antibody fragments by combining high-level expression and the Skp periplasmic chaperonin. Protein Expr Purif 23(2):289–295PubMedCrossRefGoogle Scholar
  70. 70.
    Menart V, Jevsevar S, Vilar M, Trobis A, Pavko A (2003) Constitutive versus thermo inducible expression of heterologous proteins in Escherichia coli based on strong PR, PL promoters from phage lambda. Biotechnol Bioeng 83(2):181–190PubMedCrossRefGoogle Scholar
  71. 71.
    Mergulhao FJ, Summers DK, Monteiro GA (2005) Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23(3):177–202PubMedCrossRefGoogle Scholar
  72. 72.
    Mucke M, Ostendorp R, Leonhartsberger S (2009) E. coli secretion technologies enable production of high yields of active human antibody fragments. BioProcess Int 7(8):40–47Google Scholar
  73. 73.
    Mureev S, Kovtun O, Nguyen UT, Alexandrov K (2009) Species-independent translational leaders facilitate cell-free expression. Nat Biotechnol 27(8):747–752PubMedCrossRefGoogle Scholar
  74. 74.
    Nelson AL, Reichert JM (2009) Development trends for therapeutic antibody fragments. Nat Biotechnol 27(4):331–337PubMedCrossRefGoogle Scholar
  75. 75.
    Ni Y, Chen R (2009) Extracellular recombinant protein production from Escherichia coli. Biotechnol Lett 31(11):1661–1670PubMedCrossRefGoogle Scholar
  76. 76.
    Ohashi H, Kanamori T, Shimizu Y, Ueda T (2010) A highly controllable reconstituted cell-free system- a breakthrough in protein synthesis research. Curr Pharm Biotechnol 11(3):267–271PubMedCrossRefGoogle Scholar
  77. 77.
    Pandhal J, Ow SY, Noirel J, Wright PC (2010) Improving N-glycosylation efficiency in Escherichia coli using shotgun proteomics, metabolic network analysis, and selective reaction monitoring. Biotechnol Bioeng 108:902–912PubMedCrossRefGoogle Scholar
  78. 78.
    Perezperez J, Martinezcaja C, Barbero JL, Gutierrez J (1995) Dnak/Dnaj supplementation improves the periplasmic production of human granulocyte colony stimulating factor in Escherichia coli. Biochem Biophys Res Commun 210(2):524–529CrossRefGoogle Scholar
  79. 79.
    Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131PubMedCrossRefGoogle Scholar
  80. 80.
    Qian ZG, Xia XX, Choi JH, Lee SY (2008) Proteome-based identification of fusion partner for high-level extracellular production of recombinant proteins in Escherichia coli. Biotechnol Bioeng 101(3):587–601PubMedCrossRefGoogle Scholar
  81. 81.
    Rathore A, Krishnan R, Tozer S, Smiley D, Rausch S, Seely J (2005) Scaling down of biopharmaceutical unit operations—part 2: chromatography and filtration. Biopharm Int 18(4):58Google Scholar
  82. 82.
    Ray MVL, Vanduyne P, Bertelsen AH, Jacksonmatthews DE, Sturmer AM, Merkler DJ, Consalvo AP, Young SD, Gilligan JP, Shields PP (1993) Production of recombinant salmon calcitonin by in vitro amidation of an Escherichia coli produced precursor peptide. Bio-Technology 11(1):64–70PubMedGoogle Scholar
  83. 83.
    Reilly DE, Yansura DG (2010) Production of monoclonal antibodies in E. coli. In: Shire SJ, Gombotz W, Bechtold-Peters K, Andya J (eds) Current trends in monoclonal antibodies development and manufacturing. Springer, New York, pp 295–308CrossRefGoogle Scholar
  84. 84.
    Riscaldati E, Ciabini A, Baccante A, Moscatelli D, Errichetti M, Colagrande A, Cencioni S, Marcocci F, Di Cioccio V, Di Ciccio L, Allegretti M, Martin F, Maurizi G (2006) Set up and optimization of a fermentation protocol for the production of a human antibody fragment (Fab’) express in E. coli. Pre-pilot and cGMP pilot scale studies. Microb Cell Fact 5(Suppl 1):P29CrossRefGoogle Scholar
  85. 85.
    Rozkov A, Enfors SO (2004) Analysis and control of proteolysis of recombinant proteins in Escherichia coli. Adv Biochem Eng Biotechnol 89:163–195PubMedGoogle Scholar
  86. 86.
    Sahdev S, Khattar SK, Saini KS (2008) Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies. Mol Cell Biochem 307(1–2):249–264PubMedGoogle Scholar
  87. 87.
    Salis HM, Mirsky EA, Voigt CA (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat Biotechnol 27(10):946–950PubMedCrossRefGoogle Scholar
  88. 88.
    Sazinsky SL, Ott RG, Silver NW, Tidor B, Ravetch JV, Wittrup KD (2008) Aglycosylated immunoglobulin G1variants productively engage activating Fc receptors. Proc Natl Acad Sci USA 105(51):20167–20172PubMedCrossRefGoogle Scholar
  89. 89.
    Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68(4):425–435PubMedCrossRefGoogle Scholar
  90. 90.
    Schumann W, Ferreira LCS (2004) Production of recombinant proteins in Escherichia coli. Genet Mol Biol 27:442–453CrossRefGoogle Scholar
  91. 91.
    Schwarz F, Huang W, Li CS, Schulz BL, Lizak C, Palumbo A, Numao S, Neri D, Aebi M, Wang LX (2010) A combined method for producing homogeneous glycoproteins with eukaryotic N-glycosylation. Nat Chem Biol 6(4):264–266PubMedCrossRefGoogle Scholar
  92. 92.
    Sharma SS, Blattner FR, Harcum SW (2007) Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9(2):133–141PubMedCrossRefGoogle Scholar
  93. 93.
    Shiloach J, Fass R (2005) Growing E. coli to high cell density–a historical perspective on method development. Biotechnol Adv 23(5):345–357PubMedCrossRefGoogle Scholar
  94. 94.
    Shin CS, Hong MS, Bae CS, Lee J (1997) Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Biotechnol Prog 13(3):249–257PubMedCrossRefGoogle Scholar
  95. 95.
    Shokri A, Sanden AM, Larsson G (2002) Growth rate-dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 58(3):386–392PubMedCrossRefGoogle Scholar
  96. 96.
    Shokri A, Sanden AM, Larsson G (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli. Appl Microbiol Biotechnol 60(6):654–664PubMedGoogle Scholar
  97. 97.
    Simmons LC, Reilly D, Klimowski L, Raju TS, Meng G, Sims P, Hong K, Shields RL, Damico LA, Rancatore P, Yansura DG (2002) Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies. J Immunol Methods 263(1–2):133–147PubMedCrossRefGoogle Scholar
  98. 98.
    Simmons LC, Yansura DG (1996) Translational level is a critical factor for the secretion of heterologous proteins in Escherichia coli. Nat Biotechnol 14(5):629–634PubMedCrossRefGoogle Scholar
  99. 99.
    Skretas G, Carroll S, DeFrees S, Schwartz MF, Johnson KF, Georgiou G (2009) Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Microb Cell Fact 8:50PubMedCrossRefGoogle Scholar
  100. 100.
    Studier FW, Moffatt BA (1986) Use of bacteriophage T7 RNA Polymerase to direct selective high level expression of cloned genes. J Mol Biol 189(1):113–130PubMedCrossRefGoogle Scholar
  101. 101.
    Subramanian M, Zeuzem S, Neumann A, Nelson D, Bain V, Balan V, Corey A, Fiscella M (2007) Albinterferon alpha-2b (ALB-IFN): Anti-HCV activity and pharmacokinetics/pharmacodynamics. J Interf Cytok Res 27(8):703Google Scholar
  102. 102.
    Swartz J (2006) Developing cell-free biology for industrial applications. J Ind Microbiol Biotechnol 33(7):476–485PubMedCrossRefGoogle Scholar
  103. 103.
    Swartz JR (2001) Advances in Escherichia coli production of therapeutic proteins. Curr Opin Biotechnol 12(2):195–201PubMedCrossRefGoogle Scholar
  104. 104.
    Szlachcic A, Zakrzewska M, Otlewski J (2011) Longer action means better drug: tuning up protein therapeutics. Biotechnol Adv 29(4):436–441PubMedCrossRefGoogle Scholar
  105. 105.
    Szymanski CM, Yao RJ, Ewing CP, Trust TJ, Guerry P (1999) Evidence for a system of general protein glycosylation in Campylobacter jejuni. Mol Microbiol 32(5):1022–1030PubMedCrossRefGoogle Scholar
  106. 106.
    Tegel H, Tourle S, Ottosson J, Persson A (2010) Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3). Protein Expr Purif 69(2):159–167PubMedCrossRefGoogle Scholar
  107. 107.
    Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72(2):211–222PubMedCrossRefGoogle Scholar
  108. 108.
    Thomas MD, van Tilburg A (2000) Overexpression of foreign proteins using the Vibrio fischeri lux control system. Methods Enzymol 305:315–329PubMedCrossRefGoogle Scholar
  109. 109.
    Tiwari A, Sankhyan A, Khanna N, Sinha S (2010) Enhanced periplasmic expression of high affinity humanized scFv against Hepatitis B surface antigen by codon optimization. Protein Expr Purif 74(2):272–279PubMedCrossRefGoogle Scholar
  110. 110.
    Tripathi NK, Sathyaseelan K, Jana AM, Rao PVL (2009) High yield production of heterologous proteins with Escherichia coli. Def Sci J 59(2):137–146Google Scholar
  111. 111.
    Valdez-Cruz NA, Caspeta L, Perez NO, Ramirez OT, Trujillo-Roldan MA (2010) Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb Cell Fact 9:18PubMedCrossRefGoogle Scholar
  112. 112.
    van de Walle M, Shiloach J (1998) Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation. Biotechnol Bioeng 57(1):71–78PubMedCrossRefGoogle Scholar
  113. 113.
    Varley J, Birch J (1999) Reactor design for large scale suspension animal cell culture. Cytotechnology 29(3):177–205PubMedCrossRefGoogle Scholar
  114. 114.
    Vasina JA, Baneyx F (1997) Expression of aggregation prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 9(2):211–218PubMedCrossRefGoogle Scholar
  115. 115.
    Ventura S, Villaverde A (2006) Protein quality in bacterial inclusion bodies. Trends Biotechnol 24(4):179–185PubMedCrossRefGoogle Scholar
  116. 116.
    Venturi M, Seifert C, Hunte C (2002) High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J Mol Biol 315(1):1–8PubMedCrossRefGoogle Scholar
  117. 117.
    Vera A, Arís A, Carrió M, González-Montalbán N, Villaverde A (2005) Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. J Biotechnol 119(2):163–171PubMedCrossRefGoogle Scholar
  118. 118.
    Villalobos A, Ness J, Gustafsson C, Minshull J, Govindarajan S (2006) Gene designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinform 7(1):285CrossRefGoogle Scholar
  119. 119.
    Vimberg V, Tats A, Remm M, Tenson T (2007) Translation initiation region sequence preferences in Escherichia coli. BMC Mol Biol 8:100PubMedCrossRefGoogle Scholar
  120. 120.
    Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298(5599):1790–1793PubMedCrossRefGoogle Scholar
  121. 121.
    Weir ANC, Nesbitt A, Chapman AP, Popplewell AG, Antoniw P, Lawson ADG (2002) Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans 30:512–516PubMedCrossRefGoogle Scholar
  122. 122.
    Weuster-Botz D (2000) Experimental design for fermentation media development: statistical design or global random search? J Biosci Bioeng 90(5):473–483PubMedGoogle Scholar
  123. 123.
    Wilson BS, Kautzer CR, Antelman DE (1994) Increased protein expression through improved ribosome-binding sites obtained by library mutagenesis. Biotechniques 17(5):944–953PubMedGoogle Scholar
  124. 124.
    Wong MS, Wu S, Causey TB, Bennett GN, San KY (2008) Reduction of acetate accumulation in Escherichia coli cultures for increased recombinant protein production. Metab Eng 10(2):97–108PubMedCrossRefGoogle Scholar
  125. 125.
    Yang J, Moyana T, Mackenzie S, Xia Q, Xiang J (1998) One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-α) from Escherichia coli caused by the synergistic effects of glycine and Triton X-100. Appl Environ Microbiol 64(8):2869–2874PubMedGoogle Scholar
  126. 126.
    Yang X (2007) Large-scale microbial production technology for human therapeutic products. In: Langer ES (ed) Advances in large-scale biopharmaceutical manufacturing and scale-up production. ASM Press, Washington, pp 329–362Google Scholar
  127. 127.
    Yang XM (1992) Optimization of a cultivation process for recombinant protein production by Escherichia coli. J Biotechnol 23(3):271–289PubMedCrossRefGoogle Scholar
  128. 128.
    Yee L, Blanch HW (1993) Defined media optimization for growth of recombinant Escherichia coli X90. Biotechnol Bioeng 41(2):221–230PubMedCrossRefGoogle Scholar
  129. 129.
    Yim S, Jeong K, Chang H, Lee S (2001) High-level secretory production of human granulocyte-colony stimulating factor by fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst Eng 24(4):249–254CrossRefGoogle Scholar
  130. 130.
    Yoon SH, Kim SK, Kim JF (2010) Secretory production of recombinant proteins in Escherichia coli. Recent Pat Biotechnol 4(1):23–29PubMedCrossRefGoogle Scholar
  131. 131.
    Zawada JF, Yin G, Steiner AR, Yang J, Naresh A, Roy SM, Gold DS, Heinsohn HG, Murray CJ (2011) Microscale to manufacturing scale-up of cell-free cytokine production-a new approach for shortening protein production development timelines. Biotechnol Bioeng 108(7):1570–1578PubMedCrossRefGoogle Scholar
  132. 132.
    Zhang J, Greasham R (1999) Chemically defined media for commercial fermentations. Appl Microbiol Biotechnol 51(4):407–421CrossRefGoogle Scholar
  133. 133.
    Zhang W, Xiao W, Wei H, Zhang J, Tian Z (2006) mRNA secondary structure at start AUG codon is a key limiting factor for human protein expression in Escherichia coli. Biochem Biophys Res Commun 349(1):69–78PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  1. 1.Cell Sciences & TechnologyAMGEN IncThousand OaksUSA

Personalised recommendations