Extractive fermentation for enhanced production of thailandepsin A from Burkholderia thailandensis E264 using polyaromatic adsorbent resin Diaion HP-20

  • Bing Liu
  • Junyuan Hui
  • Yi-Qiang Cheng
  • Xuehong Zhang
Fermentation, Cell Culture and Bioengineering


Thailandepsin A is natural product of Burkholderia thailandensis E264 with potent histone deacetylase inhibitory activities and promising anticancer activities. The titer of thailandepsin A is very low (less than 10 mg/l) from limited empirical fermentation. To facilitate preclinical evaluations and potentially clinical development of thailandepsin A, systematic optimization and extractive fermentation of thailandepsin A from B. thailandensis E264 culture in flasks were investigated in this pilot study. The main fermentation parameters—28°C, pH 7.0, inoculum ratio 1% (v/v), incubation duration 60 h, medium volume 26%, shaking speed 170 rpm, and chloroform as extracting solvent—were determined by single factor experiments. Polyaromatic adsorbent resin Diaion HP-20, when added at a concentration of 4% (w/v), was most effective to reduce feedback inhibition of thailandepsin A and to significantly increase the titer of target product. Central composite design was used to further optimize the fermentation medium for B. thailandensis E264. The optimized medium contains glucose 17.89 g/l, tryptone 34.98 g/l, potassium phosphate 24.84 g/l, and sodium citrate 0.01 g/l, which resulted in a large increase of the titer of thailandepsin A to 236.7 mg/l. Finally kinetic models based on the modified logistic and Luedeking–Piret equations were developed, delivering a good description of temporal variations of biomass, product, and substrate in the fermentation process, which could be used as references for developing large-scale fermentation.


Burkholderia thailandensis E264 Central composite design Extractive fermentation Thailandepsin A 



This research was supported by grants from the National Science Foundation of China (NSFC) and 973 Research Programs.


  1. 1.
    Brett PJ, DeShazer D, Woods DE (1998) Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48:317–320PubMedCrossRefGoogle Scholar
  2. 2.
    Cheng Y-Q, Wang C (2011) Histone deacetylase inhibitors and used thereof. US patent application no. 20110060021 A1, 10 Mar 2011Google Scholar
  3. 3.
    du Preez JC, van Rensburg E, Kilian SG (2008) Kinetics of growth and leukotoxin production by Mannheimia haemolytica in continuous culture. J Ind Microbiol Biot 35(6):611–618. doi: 10.1007/s10295-008-0324-y CrossRefGoogle Scholar
  4. 4.
    Haider MA, Pakshirajan K (2007) Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments. Appl Biochem Biotech 141(2–3):377–390CrossRefGoogle Scholar
  5. 5.
    Hara M, Asano K, Kawamoto I, Takiguchi T, Katsumata S, Takahashi K, Nakano H (1989) Leinamycin, a new antitumor antibiotic from Streptomyces: producing organism, fermentation and isolation. J Antibiot (Tokyo) 42(12):1768–1774CrossRefGoogle Scholar
  6. 6.
    He L, Xu YQ, Zhang XH (2008) Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol Bioeng 100(2):250–259. doi: 10.1002/bit.21767 Google Scholar
  7. 7.
    Jia B, Jin ZH, Lei YL, Mei LH, Li NH (2006) Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis. Biotechnol Lett 28(22):1811–1815. doi: 10.1007/s10529-006-9157-9 PubMedCrossRefGoogle Scholar
  8. 8.
    Lam KS, Gustavson DR, Veitch JA, Forenza S (1993) The effect of cerulenin on the production of esperamicin A1 by Actinomadura verrucosospora. J Ind Microbiol 12(2):99–102PubMedCrossRefGoogle Scholar
  9. 9.
    Lee JC, Park HR, Park DJ, Lee HB, Kim YB, Kim CJ (2003) Improved production of teicoplanin using adsorbent resin in fermentations. Lett Appl Microbiol 37(3):196–200. doi: 10.1046/j.1472-765X.2003.01374.x PubMedCrossRefGoogle Scholar
  10. 10.
    Lee JC, Park HR, Park SH, Park DJ, Lee HB, Kim YB, Kim CJ (2003) Improved production of teicoplanin using adsorbent resin in fermentations (vol 37, pg 195, 2003). Lett Appl Microbiol 37(4):360. doi: 10.1046/j.1472-765X.2003.01404.x CrossRefGoogle Scholar
  11. 11.
    Li Y, Jiang H, Xu Y, Zhang X (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77(6):1207–1217. doi: 10.1007/s00253-007-1213-4 Google Scholar
  12. 12.
    Li YQ, Jiang HX, Du XL, Huang XQ, Zhang XH, Xu YH, Xu YQ (2010) Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp M18G. Bioresour Technol 101(10):3649–3656. doi: 10.1016/j.biortech.2009.12.120 PubMedCrossRefGoogle Scholar
  13. 13.
    Luedeking R, Piret E (1959) A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–431CrossRefGoogle Scholar
  14. 14.
    Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252. doi: 10.1634/theoncologist.12-10-1247 PubMedCrossRefGoogle Scholar
  15. 15.
    Marshall VP, McWethy SJ, Sirotti JM, Cialdella JI (1990) The effect of neutral resins on the fermentation production of rubradirin. J Ind Microbiol 5(5):283–287PubMedCrossRefGoogle Scholar
  16. 16.
    Miller G (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Anal Chem 31:426–428CrossRefGoogle Scholar
  17. 17.
    Mundra P, Desai K, Lele SS (2007) Application of response surface methodology to cell immobilization for the production of palatinose. Bioresour Technol 98(15):2892–2896. doi: 10.1016/j.biortech.2006.09.046 PubMedCrossRefGoogle Scholar
  18. 18.
    Murthy MSRC, Swaminathan T, Rakshit SK, Kosugi Y (2000) Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess Eng 22(1):35–39CrossRefGoogle Scholar
  19. 19.
    Nagata H, Ochiai K, Aotani Y, Ando K, Yoshida M, Takahashi I, Tamaoki T (1997) Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KY11783: taxonomy of the producing organism, fermentation, isolation and biological activities. J Antibiot (Tokyo) 50(7):537–542Google Scholar
  20. 20.
    Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31. doi: 10.3109/07388551003757816 PubMedCrossRefGoogle Scholar
  21. 21.
    Ping S (ed) (2000) Microbiology. Higher Education, BeijingGoogle Scholar
  22. 22.
    Sayyad SA, Panda BP, Javed S, Ali M (2007) Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl Microbiol Biotechnol 73(5):1054–1058. doi: 10.1007/s00253-006-0577-1 PubMedCrossRefGoogle Scholar
  23. 23.
    Singh MP, Leighton MM, Barbieri LR, Roll DM, Urbance SE, Hoshan L, McDonald LA (2010) Fermentative production of self-toxic fungal secondary metabolites. J Ind Microbiol Biotechnol 37(4):335–340. doi: 10.1007/s10295-009-0678-9 PubMedCrossRefGoogle Scholar
  24. 24.
    FDA (2010) StatBite: FDA oncology drug product approvals in 2009. J Natl Cancer Inst 102(4):219. doi: 10.1093/jnci/djq030 Google Scholar
  25. 25.
    Tanyildizi MS, Ozer D, Elibol M (2005) Optimization of alpha-amylase production by Bacillus sp using response surface methodology. Process Biochem 40(7):2291–2296. doi: 10.1016/j.procbio.2004.06.018 CrossRefGoogle Scholar
  26. 26.
    Tisma M, Sudar M, Vasic-Racki D, Zelic B (2010) Mathematical model for Trametes versicolor growth in submerged cultivation. Bioproc Biosyst Eng 33(6):749–758. doi: 10.1007/s00449-009-0398-6 CrossRefGoogle Scholar
  27. 27.
    Vaiphei ST, Pandey G, Mukherjee KJ (2009) Kinetic studies of recombinant human interferon-gamma expression in continuous cultures of E. coli. J Ind Microbiol Biot 36(12):1453–1458. doi: 10.1007/s10295-009-0632-x
  28. 28.
    Wang C, Henkes LM, Doughty LB, He M, Wang D, Meyer-Almes FJ, Cheng YQ (2011) Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J Nat Prod 74(10):2031–2038. doi: 10.1021/np200324x Google Scholar

Copyright information

© Society for Industrial Microbiology and Biotechnology 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Biological SciencesUniversity of Wisconsin–MilwaukeeMilwaukeeUSA
  3. 3.Department of Chemistry and BiochemistryUniversity of Wisconsin–MilwaukeeMilwaukeeUSA
  4. 4.ChinAm PharmaTech Wuhan Ltd.WuhanPeople’s Republic of China

Personalised recommendations