Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate

  • Wenyang Pan
  • Joseph A. Perrotta
  • Arthur J. Stipanovic
  • Christopher T. Nomura
  • James P. NakasEmail author
Fermentation, Cell Culture and Bioengineering


Sugar maple hemicellulosic hydrolysate containing 71.9 g/l of xylose was used as an inexpensive feedstock to produce polyhydroxyalkanoates (PHAs) by Burkholderia cepacia ATCC 17759. Several inhibitory compounds present in wood hydrolysate were analyzed for effects on cell growth and PHA production with strong inhibition observed at concentrations of 1 g/l furfural, 2 g/l vanillin, 7 g/l levulinic acid, and 1 M acetic acid. Gradual catabolism of lower concentrations of these inhibitors was observed in this study. To increase the fermentability of wood hydrolysate, several detoxification methods were tested. Overliming combined with low-temperature sterilization resulted in the highest removal of total inhibitory phenolics (65%). A fed-batch fermentation exhibited maximum PHA production after 96 h (8.72 g PHA/L broth and 51.4% of dry cell weight). Compositional analysis by NMR and physical–chemical characterization showed that PHA produced from wood hydrolysate was composed of polyhydroxybutyrate (PHB) with a molecular mass (M N) of 450.8 kDa, a melting temperature (T m) of 174.4°C, a glass transition temperature (T g) of 7.31°C, and a decomposition temperature (T decomp) of 268.6°C.


Hemicellulosic hydrolysate Polyhydroxyalkanoates Burkholderia cepacia Fermentation Detoxification 



The authors express sincere thanks to Dr. Thomas Amidon and Dr. Shijie Liu for the supply of wood hydrolysate and Mr. David Kiemle for technical assistance with NMR spectra and GC-MS analysis. This research was supported by a grant from the New York State Energy Research and Development Authority (NYSERDA).


  1. 1.
    Amidon TE, Wood CD, Shupe AM, Wang Y, Graves M, Liu S (2008) Biorefinery: conversion of woody biomass to chemicals, energy and materials. J Biobased Mater Bio 2:100–120CrossRefGoogle Scholar
  2. 2.
    Bertrand JL, Ramsay BA, Ramsay JA, Chavarie C (1990) Biosynthesis of poly-beta-hydroxyalkanoates from pentoses by Pseudomonas pseudoflava. Appl Environ Microbiol 56(10):3133–3138PubMedGoogle Scholar
  3. 3.
    Canilha L, Silva JBA, Solenzal AIN (2004) Eucalyptus hydrolysate detoxification with activated charcoal adsorption or ion-exchange resins for xylitol production. Process Biochem 39:1909–1912CrossRefGoogle Scholar
  4. 4.
    Chain PS, Denef VJ, Konstantinidis KT, Vergez LM, Agullo L, Reyes VL et al (2006) Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci USA 103(42):15280–15287PubMedCrossRefGoogle Scholar
  5. 5.
    Choi J, Lee SY (1999) Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation. Appl Microbiol Biotechnol 51:13–21CrossRefGoogle Scholar
  6. 6.
    Daubaras DL, Saido K, Chakrabarty AM (1996) Purification of hydroxyquinol 1, 2-dioxygenase and maleylacetate reductase: the lower pathway of 2, 4, 5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl Environ Microbiol 62(11):4276–4279PubMedGoogle Scholar
  7. 7.
    Goris J, De Vos P, Caballero-Mellado J, Park J, Falsen E, Quensen JF 3rd et al (2004) Classification of the biphenyl- and polychlorinated biphenyl-degrading strain LB400T and relatives as Burkholderia xenovorans sp. nov. Int J Syst Evol Microbiol 54(Pt 5):1677–1681PubMedCrossRefGoogle Scholar
  8. 8.
    Heipieper HJ, Weber FJ, Sikkema J, Kewelo H, de Bont JAM (1994) Mechanism of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415CrossRefGoogle Scholar
  9. 9.
    Hu R, Lin L, Liu T, Liu S (2010) Dilute sulfuric acid hydrolysis of sugar maple wood extract at atmospheric pressure. Bioresour Technol 101(10):3586–3594PubMedCrossRefGoogle Scholar
  10. 10.
    Jőnsson LJ, Palmqvist E, Nilvebrant N, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697CrossRefGoogle Scholar
  11. 11.
    Keenan TM, Tanenbaum SW, Stipanovic AJ, Nakas JP (2004) Production and characterization of poly-β-hydroxyalkanoate copolymers from Burkholderia cepacia utilizing xylose and levulinic acid. Biotechnol Prog 20:1697–1704PubMedCrossRefGoogle Scholar
  12. 12.
    Kim TJ, Lee EY, Kim YJ, Cho K, Ryu HW (2003) Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A–12. World J Microb Biot 19:411–417CrossRefGoogle Scholar
  13. 13.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66(1):10–26PubMedCrossRefGoogle Scholar
  14. 14.
    Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ (2010) Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107(11):4919–4924PubMedCrossRefGoogle Scholar
  15. 15.
    Lee WG, Lee JS, Shin CS, Park SC, Chang HN, Chang YK (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 77–79:547–559PubMedCrossRefGoogle Scholar
  16. 16.
    Lee WG, Park BG, Chang YK, Chang HN, Lee JS, Park SC (2000) Continuous ethanol production from concentrated wood hydrolysates in an internal membrane-filtration bioreactor. Biotechnol Prog 16(2):302–304PubMedCrossRefGoogle Scholar
  17. 17.
    Li H, Wong C, Cheng K, Chen F (2008) Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT 41:385–390CrossRefGoogle Scholar
  18. 18.
    Liu S, Amidon TE, Wood CD (2008) Membrane filtration: concentration and purification of hydrolysates from biomass. J Biobased Mater Bio 2:121–134CrossRefGoogle Scholar
  19. 19.
    Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53PubMedGoogle Scholar
  20. 20.
    Mars AE, Houwing J, Dolfing J, Janssen DB (1996) Degradation of toluene and trichloroethylene by Burkholderia cepacia G4 in growth-limited fed-batch culture. Appl Environ Microbiol 62(3):886–891PubMedGoogle Scholar
  21. 21.
    Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO (2000) Effects of Ca(OH)(2) treatments (“overliming”) on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng 69(5):526–536PubMedCrossRefGoogle Scholar
  22. 22.
    Mitsui R, Hirota M, Tsuno T, Tanaka M (2010) Purification and characterization of vanillin dehydrogenases from alkaliphile Micrococcus sp. TA1 and neutrophile Burkholderia cepacia TM1. FEMS Microbiol Lett 303(1):41–47PubMedCrossRefGoogle Scholar
  23. 23.
    Mitsui R, Kusano Y, Yurimoto H, Sakai Y, Kato N, Tanaka M (2003) Formaldehyde fixation contributes to detoxification for growth of a nonmethylotroph, Burkholderia cepacia TM1, on vanillic acid. Appl Environ Microbiol 69(10):6128–6132PubMedCrossRefGoogle Scholar
  24. 24.
    Miyafuji H, Danner H, Neureiter M, Thomasser C, Bvochora J, Szolar O, Braun R (2003) Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzyme Microb Tech 32:396–400CrossRefGoogle Scholar
  25. 25.
    Mussatto SI, Roberto IC (2001) Hydrolysate detoxification with activated charcoal for xylitol production by Candida guilliermondii. Biotechnol Lett 23:1681–1684CrossRefGoogle Scholar
  26. 26.
    Newman LM, Wackett LP (1995) Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34(43):14066–14076PubMedCrossRefGoogle Scholar
  27. 27.
    Nilvebrant NO, Reimann A, Larsson S, Jonsson LJ (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91–93:35–49PubMedCrossRefGoogle Scholar
  28. 28.
    Nomura CT, Taguchi K, Taguchi S, Doi Y (2004) Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109. Appl Environ Microbiol 70(2):999–1007PubMedCrossRefGoogle Scholar
  29. 29.
    Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106(2):128–133PubMedCrossRefGoogle Scholar
  30. 30.
    Palmqvist E, Almeida JS, Hahn-Hagerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62(4):447–454PubMedCrossRefGoogle Scholar
  31. 31.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresource Technol 74:17–24CrossRefGoogle Scholar
  32. 32.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technol 74:25–33CrossRefGoogle Scholar
  33. 33.
    Ranatunga TD, Jervis J, Helm RF, McMillan JD, Wooley RJ (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics, uronic acids and ether-soluble organics. Enzyme Microb Technol 27(3–5):240–247PubMedCrossRefGoogle Scholar
  34. 34.
    Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370CrossRefGoogle Scholar
  35. 35.
    Sudesh K, Abe H, Doi Y (2000) Synthesis structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555CrossRefGoogle Scholar
  36. 36.
    Tanaka M, Hirokane Y (2000) Oxidation of aromatic aldehyde to aromatic carboxylic acid by Burkholderia cepacia TM1 isolated from Humus. J Biosci Bioeng 90:341–343PubMedGoogle Scholar
  37. 37.
    Wright AM, Hoxey EV, Soper CJ, Davies DJ (1995) Biological indicators for low temperature steam and formaldehyde sterilization: the effect of defined media on sporulation, growth index and formaldehyde resistance of spores of Bacillus stearothermophilus strains. J Appl Bacteriol 79(4):432–438PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu C, Nomura CT, Perrota JA, Stipanovic AJ, Nakas JP (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Wenyang Pan
    • 1
  • Joseph A. Perrotta
    • 1
  • Arthur J. Stipanovic
    • 2
  • Christopher T. Nomura
    • 2
  • James P. Nakas
    • 1
    Email author
  1. 1.Department of Environment and Forest BiologySUNY-College of Environmental Science and ForestrySyracuseUSA
  2. 2.Department of ChemistrySUNY-College of Environmental Science and ForestrySyracuseUSA

Personalised recommendations