Advertisement

Microbial utilization of crude glycerol for the production of value-added products

  • Rosemary Dobson
  • Vincent Gray
  • Karl RumboldEmail author
Review

Abstract

Energy fuels for transportation and electricity generation are mainly derived from finite and declining reserves of fossil hydrocarbons. Fossil hydrocarbons are also used to produce a wide range of organic carbon-based chemical products. The current global dependency on fossil hydrocarbons will not be environmentally or economically sustainable in the long term. Given the future pessimistic prospects regarding the complete dependency on fossil fuels, political and economic incentives to develop carbon neutral and sustainable alternatives to fossil fuels have been increasing throughout the world. For example, interest in biodiesel has undergone a revival in recent times. However, the disposal of crude glycerol contaminated with methanol, salts, and free fatty acids as a by-product of biodiesel production presents an environmental and economic challenge. Although pure glycerol can be utilized in the cosmetics, tobacco, pharmaceutical, and food industries (among others), the industrial purification of crude glycerol is not economically viable. However, crude glycerol could be used as an organic carbon substrate for the production of high-value chemicals such as 1,3-propanediol, organic acids, or polyols. Microorganisms have been employed to produce such high-value chemicals and the objective of this article is to provide an overview of studies on the utilization of crude glycerol by microorganisms for the production of economically valuable products. Glycerol as a by-product of biodiesel production could be used a feedstock for the manufacture of many products that are currently produced by the petroleum-based chemical industry.

Keywords

Industrial biotechnology Bioconversion Crude glycerol Biodiesel Value-added products Metabolic engineering 

References

  1. 1.
    Andreeßen B, Lange AB, Robenek H, Steinbüchel A (2009) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626PubMedCrossRefGoogle Scholar
  2. 2.
    Choi WJ, Hartono MR, Chan WH, Yeo SS (2011) Ethanol production from biodiesel-derived crude glycerol by newly isolated Kluyvera cryocrescens. App Microbiol Biotechnol 89:1255–1264CrossRefGoogle Scholar
  3. 3.
    Çelik E, Ozbay N, Oktar N, Çalik P (2008) Use of biodiesel byproduct crude glycerol as the carbon source for fermentation processes by recombinant Pichia pastoris. Ind Eng Chem Res 47:2985–2990CrossRefGoogle Scholar
  4. 4.
    Dasari M (2007) Crude glycerol potential described. Feedstuffs 79:1–3Google Scholar
  5. 5.
    Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829PubMedCrossRefGoogle Scholar
  6. 6.
    Fan X, Burton R, Zhou Y (2010) Glycerol (byproduct of biodiesel production) as a source for fuels and chemicals—mini review. Open Fuels Energy Sci J 3:17–22CrossRefGoogle Scholar
  7. 7.
    González-Pajuelo M, Andrade JC, Vasconcelos I (2004) Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol 31:442–446PubMedCrossRefGoogle Scholar
  8. 8.
    González-Pajuelo M, Meynial-Salles I, Mendes F, Andrade JC, Vasconcelos I, Soucaille P (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab Eng 7:329–336PubMedCrossRefGoogle Scholar
  9. 9.
    Gungormusler M, Gonen C, Azbar N (2011) Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess Biosyst Eng. doi:  10.1007/s00449-011-0522-2
  10. 10.
    Hong A, Cheng K, Peng F, Zhou S, Sun Y, Lui C, Lui D (2009) Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J Chem Technol Biotechnol 84:1576–1581CrossRefGoogle Scholar
  11. 11.
    International Energy Agency (2007) Energy technology essentials, biofuel production. http://www.iea.org/techno/essentials.htm. Accessed 22 August 2011
  12. 12.
    Jun S, Moon C, Kang C, Kong S, Snag B, Um Y (2010) Microbial fed-batch production of 1,3-propanediol production using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Appl Biochem Biotechnol 161:491–501PubMedCrossRefGoogle Scholar
  13. 13.
    Koutinas AA, Wang R, Webb C (2007) The biochemurgist—bioconversion of agricultural raw materials for chemical production. Biofuels Bioprod Bioref 1:24–38. doi: 10.1002/bbb.6 CrossRefGoogle Scholar
  14. 14.
    Maervoet VET, De Mey M, Beauprez J, De Maeseneire S, Soetaert WK (2011) Enhancing the microbial conversion of glycerol to 1,3-propanediol using metabolic engineering. Org Process Res Dev 15:189–202CrossRefGoogle Scholar
  15. 15.
    Min YN, Yan F, Liu FZ, Coto C, Waldroup PW (2011) Glycerine—a new energy source for poultry. Int J Poult Sci 9:1–4Google Scholar
  16. 16.
    Moon C, Ahn J, Kim S, Sang B, Um Y (2010) Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl Biochem Biotechnol 161:502–510PubMedCrossRefGoogle Scholar
  17. 17.
    Mu Y, Teng H, Zhang DJ, Wang W, Xiu ZL (2006) Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol Lett 28:1755–1759PubMedCrossRefGoogle Scholar
  18. 18.
    Oh B, Seo J, Choi MH, Kim CH (2008) Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae using response surface methodology. Biotechnol Bioprocess Eng 13:666–670CrossRefGoogle Scholar
  19. 19.
    Oh B, Seo J, Heo S, Hong W, Luo L, Joe M, Park D, Kim C (2011) Efficient production of ethanol from crude glycerol by a Klebsiella pneumoniae mutant strain. Bioresour Technol 102:3918–3922PubMedCrossRefGoogle Scholar
  20. 20.
    Papanikolaou S, Aggelis G (2003) Modelling aspects of the biotechnological valorization of raw glycerol: production of citric acid by Yarrowia lipolytica and 1,3-propanediol by Clostridium butyricum. J Chem Technol Biotechnol 78:542–547CrossRefGoogle Scholar
  21. 21.
    Posada JA, Cardona CA (2010) Design and analysis of fuel ethanol production from raw glycerol. Energy 35:5286–5293CrossRefGoogle Scholar
  22. 22.
    Rittmann D, Lindner SN, Wendisch VF (2008) Engineering of a glycerol utilization pathway for amino acid production by Corynebacterium glutamicum. Appl Environ Microbiol 74:6216–6222PubMedCrossRefGoogle Scholar
  23. 23.
    Rumbold K, van Buijsen HJ, Overkamp KM, van Groenstijn JW, Punt PJ, van der Werf MJ (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microb Cell Fact 8:64PubMedCrossRefGoogle Scholar
  24. 24.
    Rymowicz W, Rywińska A, Żarowska B, Juszczyk P (2006) Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chem Pap 60:391–394CrossRefGoogle Scholar
  25. 25.
    Rymowicz W, Rywińska A, Goldkowski W (2008) Simultaneous production of citric acid and erythritol from crude glycerol by Yarrowia lipolytica. Chem Pap 62:239–246CrossRefGoogle Scholar
  26. 26.
    Rymowicz W, Rywińska A, Żarowska B, Wojtatowicz M (2009) Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technol Biotechnol 47:1–6Google Scholar
  27. 27.
    Rywińska A, Rymowicz W (2010) High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch biorectors. J Ind Microbiol Biotechnol 37:431–435PubMedCrossRefGoogle Scholar
  28. 28.
    Scholten E, Renz T, Thomas J (2009) Continuous cultivation approach for fermentative succinic acid production from crude glycerol by Basfia succiniciproducens DD1. Biotechnol Lett 31:1947–1951PubMedCrossRefGoogle Scholar
  29. 29.
    Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27:895–913PubMedCrossRefGoogle Scholar
  30. 30.
    Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC® 6013™ utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Prog Sustain Energy 28:100–110. doi: 10.1002/ep.10350 CrossRefGoogle Scholar
  31. 31.
    Tang X, Tan Y, Zhu H, Zhao K, Shen W (2009) Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 75:1628–1634PubMedCrossRefGoogle Scholar
  32. 32.
    United States Department of Agriculture (2010) Sugar: world markets and trade. http://usda.mannlib.cornell.edu/usda/current/sugar/sugar-05-23-2011.pdf. Accessed 22 August 2011
  33. 33.
    Willke T, Vorlop K (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142PubMedCrossRefGoogle Scholar
  34. 34.
    Willke T, Vorlop K (2008) Biotransformation of glycerol into 1,3-propanediol. Eur J Lipid Sci Technol 110:831–840CrossRefGoogle Scholar
  35. 35.
    Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219PubMedCrossRefGoogle Scholar
  36. 36.
    Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10:340–351CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  1. 1.Wits Industrial Biotechnology Consortium, School of Molecular and Cell Biology, Faculty of ScienceUniversity of the Witwatersrand, JohannesburgJohannesburgSouth Africa

Personalised recommendations