Journal of Industrial Microbiology & Biotechnology

, Volume 38, Issue 12, pp 1879–1890 | Cite as

Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects

  • Yangmin Gong
  • Hanhua Hu
  • Yuan Gao
  • Xudong Xu
  • Hong Gao


Over the last few years microalgae have gained increasing interest as a natural source of valuable compounds and as bioreactors for recombinant protein production. Natural high-value compounds including pigments, long-chain polyunsaturated fatty acids, and polysaccharides, which have a wide range of applications in the food, feed, cosmetics, and pharmaceutical industries, are currently produced with nontransgenic microalgae. However, transgenic microalgae can be used as bioreactors for the production of therapeutic and industrially relevant recombinant proteins. This technology shows great promise to simplify the production process and significantly decrease the production costs. To date, a variety of recombinant proteins have been produced experimentally from the nuclear or chloroplast genome of transgenic Chlamydomonas reinhardtii. These include monoclonal antibodies, vaccines, hormones, pharmaceutical proteins, and others. In this review, we outline recent progress in the production of recombinant proteins with transgenic microalgae as bioreactors, methods for genetic transformation of microalgae, and strategies for highly efficient expression of heterologous genes. In particular, we highlight the importance of maximizing the value of transgenic microalgae through producing recombinant proteins together with recovery of natural high-value compounds. Finally, we outline some important issues that need to be addressed before commercial-scale production of high-value recombinant proteins and compounds from transgenic microalgae can be realized.


Microalgae Chlamydomonas reinhardtii Phaeodactylum tricornutum Chlorella sp. Recombinant proteins Valuable compounds Genetic transformation Transgene 



The authors acknowledge the financial support by the Independent Foundation of the National Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences (No. 2008FBZ19).


  1. 1.
    Apt KE, Kroth-Pancic PG, Grossman AR (1996) Stable nuclear transformation of the diatom Phaeodactylum tricornutum. Mol Gen Genet 252:572–579PubMedGoogle Scholar
  2. 2.
    Auchincloss AH, Loroch AI, Rochaix JD (1999) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: cloning of the cDNA and its characterization as a selectable shuttle marker. Mol Gen Genet 261:21–30PubMedCrossRefGoogle Scholar
  3. 3.
    Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538PubMedCrossRefGoogle Scholar
  4. 4.
    Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae—novel highly efficient starch producers. Biotechnol Bioeng 108:766–776PubMedCrossRefGoogle Scholar
  5. 5.
    Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Cell Biol 11:2328–2332PubMedGoogle Scholar
  6. 6.
    Cerutti H, Johnson AM, Gillham NW, Boynton JE (1997) A eubacterial gene conferring spectinomycin resistance on Chlamydomonas reinhardtii: integration into the nuclear genome and gene expression. Genetics 145:97–110PubMedGoogle Scholar
  7. 7.
    Chen GQ, Jiang Y, Chen F (2007) Fatty acid and lipid class composition of the eicosapentaenoic acid-producing microalga, Nitzschia laevis. Food Chem 104:1580–1585CrossRefGoogle Scholar
  8. 8.
    Chow KC, Tung WL (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18:778–780CrossRefGoogle Scholar
  9. 9.
    Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109PubMedCrossRefGoogle Scholar
  10. 10.
    Cordero BF, Couso I, León R, Rodríguez H, Vargas MÁ (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Appl Microbiol Biotechnol 91:341–351PubMedCrossRefGoogle Scholar
  11. 11.
    Corellou F, Schwartz C, Mottam JP, Djouani-Tahri EB, Sanchez F, Bouget FY (2009) Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote Ostreococcus. Plant Cell 21:3436–3449PubMedCrossRefGoogle Scholar
  12. 12.
    Costa JAV, de Morais MG (2010) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102:2–9PubMedCrossRefGoogle Scholar
  13. 13.
    Curtain C (2000) Plant biotechnology–the growth of Australia’s algal β-carotene industry. Australas Biotechnol 10:18Google Scholar
  14. 14.
    Davies JP, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 20:2959–2965PubMedCrossRefGoogle Scholar
  15. 15.
    Dawson HN, Burlingame R, Cannons AC (1997) Stable transformation of Chlorella: rescue of nitrate reductase-deficient mutants with the nitrate reductase gene. Curr Microbiol 35:356–362PubMedCrossRefGoogle Scholar
  16. 16.
    Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809PubMedGoogle Scholar
  17. 17.
    Doetsch NA, Favreau MR, Kuscuoglu N, Thompson MD, Hallick RB (2001) Chloroplast transformation in Euglena gracilis: splicing of a group III twintron transcribed from a transgenic psbK operon. Curr Genet 39:49–60PubMedCrossRefGoogle Scholar
  18. 18.
    Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17:403–412CrossRefGoogle Scholar
  19. 19.
    Dove A (2002) Uncorking the biomanufacturing bottleneck. Nat Biotechnol 20:777–779PubMedCrossRefGoogle Scholar
  20. 20.
    Dreesen IAJ, Charpin-El Hamri G, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol 145:273–280PubMedCrossRefGoogle Scholar
  21. 21.
    Dunahay TG, Jarvis EE, Roessler PG (1995) Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila. J Phycol 31:1004–1012CrossRefGoogle Scholar
  22. 22.
    El-Sheekh MM (1999) Stable transformation of the intact cells of Chlorella kessleri with high velocity microprojectiles. Biologia Plantarum 42:209–216CrossRefGoogle Scholar
  23. 23.
    Falciatore A, Casotti R, Leblanc C, Abrescia C, Bowler C (1999) Transformation of nonselectable reporter genes in marine diatoms. Mar Biotechnol 1:239–251PubMedCrossRefGoogle Scholar
  24. 24.
    Fischer H, Robl l, Sumper M, Kröger N (1999) Targeting and covalent modification of cell wall and membrane proteins heterologously expressed in the diatom Cylindrotheca fusiformis. J Phycol 35:113–120CrossRefGoogle Scholar
  25. 25.
    Fischer N, Rochaix JD (2001) The flanking regions of PsaD drive efficient gene expression in the nucleus of the green alga Chlamydomonas reinhardtii. FEBS Lett 581:5555–5560CrossRefGoogle Scholar
  26. 26.
    Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361PubMedCrossRefGoogle Scholar
  27. 27.
    Geng D, Wang Y, Wang P, Li W, Sun Y (2003) Stable expression of hepatitis B surface antigen in Dunaliella salina (Chlorophyta). J Appl Phycol 15:451–456CrossRefGoogle Scholar
  28. 28.
    Hall LM, Taylor KB, Jones DD (1993) Expression of a foreign gene in Chlamydomonas reinhardtii. Gene 124:75–81PubMedCrossRefGoogle Scholar
  29. 29.
    Hallmann A, Rappel A (1999) Genetic engineering of the multicellular green alga Volvox: a modified and multiplied bacterial antibiotic resistance gene as a dominant selectable marker. Plant J 17:99–109PubMedCrossRefGoogle Scholar
  30. 30.
    Hallmann A, Sumper M (1994) An inducible arylsulfatase of Volvox carteri with properties suitable for a reporter-gene system. Purification, characterization and molecular cloning. Eur J Biochem 221:143–150PubMedCrossRefGoogle Scholar
  31. 31.
    Hirakawa Y, Ishida K (2010) Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga. Plant J 64:402–410PubMedCrossRefGoogle Scholar
  32. 32.
    Hirakawa Y, Kofuji R, Ishida K (2008) Transient transformation of a chlorarachniophyte alga, Lotharella amoebiformis (Chlorarachniophyceae), with uidA and egfp reporter genes. J Phycol 44:818–820CrossRefGoogle Scholar
  33. 33.
    Janssen M, Tramper J, Mur LR, Wijffels RH (2003) Enclosed outdoor photobioreactors: light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnol Bioeng 81:193–210PubMedCrossRefGoogle Scholar
  34. 34.
    Jarvis EE, Brown LM (1991) Transient expression of firefly luciferase in protoplasts of the green alga Chlorella ellipsoidea. Curr Genet 19:317–321CrossRefGoogle Scholar
  35. 35.
    Jarvis EE, Dunahay TG, Brown LM (2004) DNA nucleoside composition and methylation of several species of microalgae. J Phycol 28:356–362CrossRefGoogle Scholar
  36. 36.
    Kim DH, Kim YT, Cho JJ, Bae JH, Hur SB, Hwang I, Choi TJ (2002) Stable integration and functional expression of flounder growth hormone gene in transformed microalga, Chlorella ellipsoidea. Mar Biotechnol 4:63–73PubMedCrossRefGoogle Scholar
  37. 37.
    Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 87:1228–1232PubMedCrossRefGoogle Scholar
  38. 38.
    Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601PubMedCrossRefGoogle Scholar
  39. 39.
    Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29:109–117PubMedCrossRefGoogle Scholar
  40. 40.
    Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738CrossRefGoogle Scholar
  41. 41.
    Lapidot M, Raveh D, Sivan A, Arad SM, Shapira M (2002) Stable chloroplast transformation of the unicellular red alga Porphyridium species. Plant Physiol 129:7–12PubMedCrossRefGoogle Scholar
  42. 42.
    León-Bañares R, González-Ballester D, Galván A, Fernández E (2004) Transgenic microalgae as green cell-factories. Trends Biotechnol 22:45–52PubMedCrossRefGoogle Scholar
  43. 43.
    Lerche K, Hallmann A (2009) Stable nuclear transformation of Gonium pectorale. BMC Biotechnol 9:64PubMedCrossRefGoogle Scholar
  44. 44.
    Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167PubMedCrossRefGoogle Scholar
  45. 45.
    Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447CrossRefGoogle Scholar
  46. 46.
    Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5:402–412PubMedCrossRefGoogle Scholar
  47. 47.
    Mayfield SP, Franklin SE (2005) Expression of human antibodies in eukaryotic micro-algae. Vaccine 23:1828–1832PubMedCrossRefGoogle Scholar
  48. 48.
    Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci U S A 100:438–442PubMedCrossRefGoogle Scholar
  49. 49.
    Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin in Biotechnol 18:1–8CrossRefGoogle Scholar
  50. 50.
    Mendes A, Reis A, Vasconcelos R, Guerra P, da Silva TL (2009) Crypthecodinium cohnii with emphasis on DHA production: a review. J Appl Phycol 21:199–214CrossRefGoogle Scholar
  51. 51.
    Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671PubMedCrossRefGoogle Scholar
  52. 52.
    Miyagawa-Yamaguchi A, Okami T, Kira N, Yamaguchi H, Ohnishi K, Adachi M (2011) Stable nuclear transformation of the diatom Chaetoceros sp. Phycol Res 59:113–119CrossRefGoogle Scholar
  53. 53.
    Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70PubMedCrossRefGoogle Scholar
  54. 54.
    Nakamura Y, Gojobori T, Ikemura T (2000) Codon usage tabulated from international DNA sequence database: status for the year 2000. Nucleic Acids Res. doi:  10.1093/nar/28.1.292
  55. 55.
    Neupert J, Karcher D, Bock R (2009) Generation of Chlamydomonas strains that efficiently express nuclear transgenes. Plant J 57:1140–1150PubMedCrossRefGoogle Scholar
  56. 56.
    Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31:264–271PubMedCrossRefGoogle Scholar
  57. 57.
    Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466PubMedCrossRefGoogle Scholar
  58. 58.
    Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439PubMedCrossRefGoogle Scholar
  59. 59.
    Potvin G, Zhang Z (2010) Strategies for high-level recombinant protein expression in transgenic microalgae: a review. Biotechnol Adv 28:910–918PubMedCrossRefGoogle Scholar
  60. 60.
    Poulsen N, Kröger N (2005) A new molecular tool for transgenic diatoms control of mRNA and protein biosynthesis by an inducible promoter-terminator cassette. FEBS J 272:3413–3423PubMedCrossRefGoogle Scholar
  61. 61.
    Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefGoogle Scholar
  62. 62.
    Randolph-Anderson BL, Boynton JE, Gillham NW, Harris EH, Johnson AM, Dorthu MP, Matagne RF (1993) Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation. Mol Gen Genet 236:235–244PubMedCrossRefGoogle Scholar
  63. 63.
    Rasala BA, Muto M, Lee PA, Jager M, Cardoso RMF, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:1–15CrossRefGoogle Scholar
  64. 64.
    Rocha J, Garcia J, Henriques M (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242PubMedCrossRefGoogle Scholar
  65. 65.
    Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin in Biotechnol 19:430–436CrossRefGoogle Scholar
  66. 66.
    Schiedlmeier B, Schmitt R, Müller W, Kirk MM, Gruber H, Mages W, Kirk DL (1994) Nuclear transformation of Volvox carteri. Proc Natl Acad Sci U S A 91:5080–5084PubMedCrossRefGoogle Scholar
  67. 67.
    Schmidt FR (2004) Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65:363–372PubMedCrossRefGoogle Scholar
  68. 68.
    Schroda M, Blocker D, Beck CF (2000) The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J 21:121–131PubMedCrossRefGoogle Scholar
  69. 69.
    Shi Y, Sheng JC, Yang FM, Hu QH (2007) Purification and identification of polysaccharide derived from Chlorella pyrenoidosa. Food Chem 103:101–105CrossRefGoogle Scholar
  70. 70.
    Sizova I, Fuhrmann M, Hegemann P (2001) A Streptomyces rimosus aphVIII gene coding for a new type phosphotransferase provides stable antibiotic resistance to Chlamydomonas reinhardtii. Gene 277:221–229PubMedCrossRefGoogle Scholar
  71. 71.
    Specht E, Miyake-Stoner S, Mayfield SP (2010) Micro-algae come of age as a platform for recombinant protein production. Biotechnol Lett 32:1373–1383PubMedCrossRefGoogle Scholar
  72. 72.
    Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial application of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefGoogle Scholar
  73. 73.
    Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484PubMedCrossRefGoogle Scholar
  74. 74.
    Stevens DR, Rochaix JD, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genetics 251:23–30Google Scholar
  75. 75.
    Sun M, Qian K, Su N, Chang H, Liu J, Chen GF (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092PubMedCrossRefGoogle Scholar
  76. 76.
    Sun Y, Gao X, Li Q, Zhang Q, Xu Z (2006) Functional complementation of a nitrate reductase defective mutant of a green alga Dunaliella viridis by introducing the nitrate reductase gene. Gene 377:140–149PubMedCrossRefGoogle Scholar
  77. 77.
    Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37:133–138PubMedCrossRefGoogle Scholar
  78. 78.
    Tan C, Qin S, Zhang Q, Jiang P, Zhao F (2005) Establishment of a micro-particle bombardment transformation system for Dunaliella salina. J Microbiol 43:361–365PubMedGoogle Scholar
  79. 79.
    Tang DK, Qiao SY, Wu M (1995) Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. Biochem Mol Biol Int 36:1025–1035PubMedGoogle Scholar
  80. 80.
    ten Lohuis MR, Miller DJ (1998) Genetic transformation of dinoflagellates (Amphidinium and Symbiodinium): expression of GUS in microalgae using heterologous promoter constructs. Plant J 13:427–435CrossRefGoogle Scholar
  81. 81.
    Teng C, Qin S, Liu J, Yu D, Liang C, Tseng C (2002) Transient expression of lacZ in bombarded unicellular green alga Haematococcus pluvialis. J Appl Phycol 14:495–500CrossRefGoogle Scholar
  82. 82.
    Terpe K (2006) Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 72:211–222PubMedCrossRefGoogle Scholar
  83. 83.
    Todd Lorenz R, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167CrossRefGoogle Scholar
  84. 84.
    Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104:663–673PubMedGoogle Scholar
  85. 85.
    Walker TL, Purton S, Becker DK, Collet C (2005) Microalgae as bioreactors. Plant Cell Report 24:629–641CrossRefGoogle Scholar
  86. 86.
    Wang XF, Brandsma M, Tremblay R, Maxwell D, Jevnikar AM, Huner N, Ma S (2008) A novel expression platform for the production of diabetes-associated autoantigen human glutamic acid decarboxylase (hGAD65). BMC Biotechnol 8:87PubMedCrossRefGoogle Scholar
  87. 87.
    Wu-Scharf D, Jeong Br, Zhang C, Cerutti H (2000) Transgene and transposon silencing in Chlamydomonas by a DEAH-Box RNA helicase. Science 290:1159–1162PubMedCrossRefGoogle Scholar
  88. 88.
    Yang Z, Li Y, Chen F, Li D, Zhang Z, Liu Y, Zheng D, Wang Y, Shen G (2006) Expression of human soluble TRAIL in Chlamydomonas reinhardtii chloroplast. Chin Sci Bull 51:1703–1709CrossRefGoogle Scholar
  89. 89.
    Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE (2000) Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J Pycol 36:379–386Google Scholar
  90. 90.
    Zeiler KG, Heacox DA, Toon ST, Kadam KL, Brown LM (1995) Use of microalgae for assimilation and utilization of carbon dioxide from fossil fuel-fired power plant flue gas. Energy Conv Manag 36:707–712CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Yangmin Gong
    • 1
  • Hanhua Hu
    • 1
  • Yuan Gao
    • 1
  • Xudong Xu
    • 1
  • Hong Gao
    • 1
  1. 1.The State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of Hydrobiology, Chinese Academy of SciencesWuhanChina

Personalised recommendations