Journal of Industrial Microbiology & Biotechnology

, Volume 39, Issue 2, pp 275–287

Comparison of microbial hosts and expression systems for mammalian CYP1A1 catalysis

  • Sjef Cornelissen
  • Mattijs K. Julsing
  • Andreas Schmid
  • Bruno Bühler
Original Paper


Mammalian cytochrome P450 enzymes are of special interest as biocatalysts for fine chemical and drug metabolite synthesis. In this study, the potential of different recombinant microorganisms expressing rat and human cyp1a1 genes is evaluated for such applications. The maximum specific activity for 7-ethoxyresorufin O-deethylation and gene expression levels were used as parameters to judge biocatalyst performance. Under comparable conditions, E. coli is shown to be superior over the use of S. cerevisiae and P. putida as hosts for biocatalysis. Of all tested E. coli strains, E. coli DH5α and E. coli JM101 harboring rat CYP1A1 showed the highest activities (0.43 and 0.42 U gCDW−1, respectively). Detection of active CYP1A1 in cell-free E. coli extracts was found to be difficult and only for E. coli DH5α, expression levels could be determined (41 nmol gCDW−1). The presented results show that efficient expression of mammalian cyp1a1 genes in recombinant microorganisms is troublesome and host-dependent and that enhancing expression levels is crucial in order to obtain more efficient biocatalysts. Specific activities currently obtained are not sufficient yet for fine chemical production, but are sufficient for preparative-scale drug metabolite synthesis.


Cytochrome P450 1A1 7-Ethoxyresorufin O-deethylation Whole-cell biocatalysis Gene expression Escherichia coli 


  1. 1.
    Bagdasarian M, Lurz R, Ruckert B, Franklin FC, Bagdasarian MM, Frey J, Timmis KN (1981) Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 16:237–247PubMedCrossRefGoogle Scholar
  2. 2.
    Barnes HJ, Arlotto MP, Waterman MR (1991) Expression and enzymatic activity of recombinant cytochrome-P450 17α-hydroxylase in Escherichia coli. Proc Natl Acad Sci USA 88:5597–5601PubMedCrossRefGoogle Scholar
  3. 3.
    Bernhardt R (2006) Cytochromes P450 as versatile biocatalysts. J Biotechnol 124:128–145PubMedCrossRefGoogle Scholar
  4. 4.
    Blake JAR, Pritchard M, Ding S, Smith GCM, Burchell B, Wolf CR, Friedberg T (1996) Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coli. FEBS Lett 397:210–214PubMedCrossRefGoogle Scholar
  5. 5.
    Blank LM, Ebert BE, Bühler B, Schmid A (2008) Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint-based modeling and experimental verification. Biotechnol Bioeng 100:1050–1065PubMedCrossRefGoogle Scholar
  6. 6.
    Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132PubMedCrossRefGoogle Scholar
  7. 7.
    Bühler B, Bollhalder I, Hauer B, Witholt B, Schmid A (2003) Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale. Biotechnol Bioeng 82:833–842PubMedCrossRefGoogle Scholar
  8. 8.
    Bureik M, Schiffler B, Hiraoka Y, Vogel F, Bernhardt R (2002) Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein, etp1. Biochemistry 41:2311–2321PubMedCrossRefGoogle Scholar
  9. 9.
    Choc MG, Webster DA, Caughey WS (1982) Oxygenated intermediate and carbonyl species of cytochrome o (Vitreoscilla). characterization by infrared spectroscopy. J Biol Chem 257:865–869PubMedGoogle Scholar
  10. 10.
    Chun YJ, Shimada T, Guengerich FP (1996) Construction of a human cytochrome P450 1A1:Rat NADPH-cytochrome P450 reductase fusion protein cDNA and expression in Escherichia coli, purification, and catalytic properties of the enzyme in bacterial cells and after purification. Arch Biochem Biophys 330:48–58PubMedCrossRefGoogle Scholar
  11. 11.
    Collins JM (2001) Inter-species differences in drug properties. Chem Biol Interact 134:237–242PubMedCrossRefGoogle Scholar
  12. 12.
    Dong J, Porter TD (1996) Coexpression of mammalian cytochrome P450 and reductase in Escherichia coli. Arch Biochem Biophys 327:254–259PubMedCrossRefGoogle Scholar
  13. 13.
    Dragan C-A, Zearo S, Hannemann F, Bernhardt R, Bureik M (2005) Efficient conversion of 11-deoxycortisol to cortisol (hydrocortisone) by recombinant fission yeast Schizosaccharomyces pombe. FEMS Yeast Res 5:621–625PubMedCrossRefGoogle Scholar
  14. 14.
    Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425PubMedCrossRefGoogle Scholar
  15. 15.
    Dumas B, Cauet G, Lacour T, Degryse E, Laruelle L, Ledoux C, Spagnoli R, Achstetter T (1996) 11β-hydroxylase activity in recombinant yeast mitochondria. In vivo conversion of 11-deoxycortisol to hydrocortisone. Eur J Biochem 238:495–504PubMedCrossRefGoogle Scholar
  16. 16.
    Duport C, Schoepp B, Chatelain E, Spagnoli R, Dumas B, Pompon D (2003) Critical role of the plasma membrane for expression of mammalian mitochondrial side chain cleavage activity in yeast. Eur J Biochem 270:1502–1514PubMedCrossRefGoogle Scholar
  17. 17.
    Gillam EM (2007) Extending the capabilities of nature’s most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Arch Biochem Biophys 464:176–186PubMedCrossRefGoogle Scholar
  18. 18.
    Gonzalez FJ, Korzekwa KR (1995) Cytochromes P450 expression systems. Annu Rev Pharmacol Toxicol 35:369–390PubMedCrossRefGoogle Scholar
  19. 19.
    Guengerich FP, Martin MV, Guo Z, Chun YJ (1996) Purification of functional recombinant P450s from bacteria. Methods Enzymol 272:35–44PubMedCrossRefGoogle Scholar
  20. 20.
    Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580PubMedCrossRefGoogle Scholar
  21. 21.
    Hanlon SP, Friedberg T, Wolf CR, Ghisalba O, Kittelmann M (2007) Recombinant yeast and bacteria that express human P450s: bioreactors for drug discovery, development, and biotechnology. In: Schmid RD, Urlacher VB (eds) Modern biooxidation—Enzymes, reactions, and applications. Wiley-VCH, Weinheim, Germany, pp 233–252Google Scholar
  22. 22.
    Harnastai IN, Gilep AA, Usanov SA (2006) The development of an efficient system for heterologous expression of cytochrome P450s in Escherichia coli using hemA gene co-expression. Protein Expr Purif 46:47–55PubMedCrossRefGoogle Scholar
  23. 23.
    Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F (2007) Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Appl Microbiol Biotechnol 74:961–973PubMedCrossRefGoogle Scholar
  24. 24.
    Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933PubMedCrossRefGoogle Scholar
  25. 25.
    Ingelman-Sundberg M (2004) Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci 25:193–200PubMedCrossRefGoogle Scholar
  26. 26.
    Iwata H, Fujita K, Kushida H, Suzuki A, Konno Y, Nakamura K, Fujino A, Kamataki T (1998) High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli. Biochem Pharmacol 55:1315–1325PubMedCrossRefGoogle Scholar
  27. 27.
    Jamis-Dow CA, Klecker RW, Katki AG, Collins JM (1995) Metabolism of taxol by human and rat liver in vitro: a screen for drug interactions and interspecies differences. Cancer Chemother Pharmacol 36:107–114PubMedCrossRefGoogle Scholar
  28. 28.
    Julsing MK, Cornelissen S, Bühler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12:177–186PubMedCrossRefGoogle Scholar
  29. 29.
    Kaderbhai MA, Ugochukwu CC, Lamb DC, Kelly SL (2000) Targeting of active human cytochrome P4501A1 (CYP1A1) to the periplasmic space of Escherichia coli. Biochem Biophys Res Commun 279:803–807PubMedCrossRefGoogle Scholar
  30. 30.
    Kim DH, Kim KH, Isin EM, Guengerich FP, Chae HZ, Ahn T, Yun CH (2008) Heterologous expression and characterization of wild-type human cytochrome P450 1A2 without conventional N-terminal modification in Escherichia coli. Protein Expr Purif 57:188–200PubMedCrossRefGoogle Scholar
  31. 31.
    Kolar NW, Swart AC, Mason JI, Swart P (2007) Functional expression and characterisation of human cytochrome P45017α in Pichia pastoris. J Biotechnol 129:635–644PubMedCrossRefGoogle Scholar
  32. 32.
    Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans - Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932PubMedGoogle Scholar
  33. 33.
    Leak DJ, Sheldon RA, Woodley JM, Adlercreutz P (2009) Biocatalysts for selective introduction of oxygen. Biocatal Biotransform 27:1–26CrossRefGoogle Scholar
  34. 34.
    Ma Q, Lu AY (2007) CYP1A induction and human risk assessment: an evolving tale of in vitro and in vivo studies. Drug Metab Dispos 35:1009–1016PubMedCrossRefGoogle Scholar
  35. 35.
    Mehmood Z, Kelly DE, Kelly SL (1997) Cytochrome P450 3A4 mediated metabolism of 2, 4-dichlorophenol. Chemosphere 34:2281–2291PubMedCrossRefGoogle Scholar
  36. 36.
    Messing J (1979) A multipurpose cloning system based on single-stranded DNA bacteriophage M13. Recomb DNA Tech Bull 2:43–49Google Scholar
  37. 37.
    Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H (1990) Expression of cloned yeast NADPH-cytochrome-P450 reductase gene in Saccharomyces cerevisiae. J Biochem 108:859–865PubMedGoogle Scholar
  38. 38.
    Ni Y, Chen RR (2004) Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol Bioeng 87:804–811PubMedCrossRefGoogle Scholar
  39. 39.
    Ni Y, Chen RR (2005) Lipoprotein mutation accelerates substrate permeability-limited toluene dioxygenase-catalyzed reaction. Biotechnol Prog 21:799–805PubMedCrossRefGoogle Scholar
  40. 40.
    Nthangeni MB, Urban P, Pompon D, Smit MS, Nicaud J-M (2004) The use of Yarrowia lipolytica for the expression of human cytochrome P450 CYP1A1. Yeast 21:583–592PubMedCrossRefGoogle Scholar
  41. 41.
    O’Reilly E, Kohler V, Flitsch SL, Turner NJ (2011) Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 47:2490–2501CrossRefGoogle Scholar
  42. 42.
    Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378PubMedGoogle Scholar
  43. 43.
    Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J Biol Chem 239:2379–2385PubMedGoogle Scholar
  44. 44.
    Paciello L, de Alteriis E, Mazzoni C, Palermo V, Zueco J, Parascandola P (2009) Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1β in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy. Microb Cell Fact 8:70PubMedCrossRefGoogle Scholar
  45. 45.
    Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80:33–41PubMedCrossRefGoogle Scholar
  46. 46.
    Panke S, Meyer A, Huber CM, Witholt B, Wubbolts MG (1999) An alkane-responsive expression system for the production of fine chemicals. Appl Environ Microbiol 65:2324–2332PubMedGoogle Scholar
  47. 47.
    Parikh A, Gillam EMJ, Guengerich FP (1997) Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat Biotechnol 15:784–788PubMedCrossRefGoogle Scholar
  48. 48.
    Pechurskaya TA, Harnastai IN, Grabovec IP, Gilep AA, Usanov SA (2007) Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s. Biochem Biophys Res Commun 353:598–604PubMedCrossRefGoogle Scholar
  49. 49.
    Pompon D, Gautier J-C, Perret A, Truan G, Urban P (1997) Simulation of human xenobiotic metabolism in microorganisms: yeast a good compromise between E. coli and human cells. J Hepatol 26:81–85PubMedCrossRefGoogle Scholar
  50. 50.
    Pritchard MP, Ossetian R, Li DN, Henderson CJ, Burchell B, Wolf CR, Friedberg T (1997) A general strategy for the expression of recombinant human cytochrome P450s in Escherichia coli using bacterial signal peptides: Expression of CYP3A4, CYP2A6, and CYP2E1. Arch Biochem Biophys 345:342–354PubMedCrossRefGoogle Scholar
  51. 51.
    Ruijssenaars HJ, Sperling EMGM, Wiegerinck PHG, Brands FTL, Wery J, de Bont JAM (2007) Testosterone 15β-hydroxylation by solvent tolerant Pseudomonas putida S12. J Biotechnol 131:205–208PubMedCrossRefGoogle Scholar
  52. 52.
    Ruinatscha R, Hollrigl V, Otto K, Schmid A (2006) Productivity of selective electroenzymatic reduction and oxidation reactions: theoretical and practical considerations. Adv Synth Catal 348:2015–2026CrossRefGoogle Scholar
  53. 53.
    Rutten A, Falke HE, Catsburg JF, Topp R, Blaauboer BJ, van Holsteijn I, Doorn L, van Leeuwen EXR (1987) Interlaboratory comparison of total cytochrome-P450 and protein determinations in rat-liver microsomes—reinvestigation of assay conditions. Arch Toxicol 61:27–33PubMedCrossRefGoogle Scholar
  54. 54.
    Rutten A, Falke HE, Catsburg JF, Wortelboer HM, Blaauboer BJ, Doorn L, van Leeuwen FXR, Theelen R, Rietjens I (1992) Interlaboratory comparison of microsomal ethoxyresorufin and pentoxyresorufin O-dealkylation determinations - Standardization of assay conditions. Arch Toxicol 66:237–244PubMedCrossRefGoogle Scholar
  55. 55.
    Sakaki T, Kominami S, Takemori S, Ohkawa H, Akiyoshi-Shibata M, Yabusaki Y (1994) Kinetic studies on a genetically-engineered fused enzyme between rat cytochrome P4501a1 and yeast NADPH-P450 reductase. Biochemistry 33:4933–4939PubMedCrossRefGoogle Scholar
  56. 56.
    Sakaki T, Sawada N, Takeyama K-I, Kato S, Inouye K (1999) Enzymatic properties of mouse 25-hydroxyvitamin D3 1α-hydroxylase expressed in Escherichia coli. Eur J Biochem 259:731–738PubMedCrossRefGoogle Scholar
  57. 57.
    Sakaki T, Shinkyo R, Takita T, Ohta M, Inouye K (2002) Biodegradation of polychlorinated dibenzo-p-dioxins by recombinant yeast expressing rat CYP1A subfamily. Arch Biochem Biophys 401:91–98PubMedCrossRefGoogle Scholar
  58. 58.
    Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  59. 59.
    Sandhu P, Guo ZY, Baba T, Martin MV, Tukey RH, Guengerich FP (1994) Expression of modified human cytochrome P450 1A2 in Escherichia coli: Stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch Biochem Biophys 309:168–177PubMedCrossRefGoogle Scholar
  60. 60.
    Schroer K, Kittelmann M, Lutz S (2010) Recombinant human cytochrome P450 monooxygenases for drug metabolite synthesis. Biotechnol Bioeng 106:699–706PubMedCrossRefGoogle Scholar
  61. 61.
    Shet MS, Fisher CW, Arlotto MP, Shackleton CHL, Holmans PL, Martinwixtrom CA, Saeki Y, Estabrook RW (1994) Purification and enzymatic-properties of a recombinant fusion protein expressed in Escherichia coli containing the domains of bovine P450 17A and rat NADPH-P450 reductase. Arch Biochem Biophys 311:402–417PubMedCrossRefGoogle Scholar
  62. 62.
    Shet MS, Fisher CW, Estabrook RW (1997) The function of recombinant cytochrome P450 s in intact Escherichia coli cells: The 17 α-hydroxylation of progesterone and pregnenolone by P450c17. Arch Biochem Biophys 339:218–225PubMedCrossRefGoogle Scholar
  63. 63.
    Shimizu M, Lilly MD, Woodley JM (2003) Regiospecific naphthalene monohydroxylation by a recombinant yeast producing a P4501A1-yeast reductase fused enzyme. Enzyme Microb Technol 33:606–611CrossRefGoogle Scholar
  64. 64.
    Shinkyo R, Kamakura M, Ikushiro S-I, Inouye K, Sakaki T (2006) Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant. Appl Microbiol Biotechnol 72:584–590PubMedCrossRefGoogle Scholar
  65. 65.
    Smits THM, Seeger MA, Witholt B, van Beilen JB (2001) New alkane-responsive expression vectors for Escherichia coli and Pseudomonas. Plasmid 46:16–24PubMedCrossRefGoogle Scholar
  66. 66.
    Straathof AJJ, Panke S, Schmid A (2002) The production of fine chemicals by biotransformations. Curr Opin Biotechnol 13:548–556PubMedCrossRefGoogle Scholar
  67. 67.
    Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149PubMedCrossRefGoogle Scholar
  68. 68.
    Tanaka N, Miyasho T, Shinkyo R, Sakaki T, Yokota H (2006) cDNA cloning and characterization of feline CYP1A1 and CYP1A2. Life Sci 79:2463–2473PubMedCrossRefGoogle Scholar
  69. 69.
    van Beilen JB, Holtackers R, Luscher D, Bauer U, Witholt B, Duetz WA (2005) Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl Environ Microbiol 71:1737–1744PubMedCrossRefGoogle Scholar
  70. 70.
    Vasilev NP, Julsing MK, Koulman A, Clarkson C, Woerdenbag HJ, Ionkova I, Bos R, Jaroszewski JW, Kayser O, Quax WJ (2006) Bioconversion of deoxypodophyllotoxin into epipodophyllotoxin in E. coli using human cytochrome P450 3A4. J Biotechnol 126:383–393PubMedCrossRefGoogle Scholar
  71. 71.
    Verduyn C, Postma E, Scheffers WA, Vandijken JP (1992) Effect of benzoic-acid on metabolic fluxes in yeasts—a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8:501–517PubMedCrossRefGoogle Scholar
  72. 72.
    Voice MW, Zhang Y, Wolf CR, Burchell B, Friedberg T (1999) Effects of human cytochrome b5 on CYP3A4 activity and stability in vivo. Arch Biochem Biophys 366:116–124PubMedCrossRefGoogle Scholar
  73. 73.
    Woodley JM (2006) Microbial biocatalytic processes and their development. Adv Appl Microbiol 60:1–15PubMedCrossRefGoogle Scholar
  74. 74.
    Wu ZL, Podust LM, Guengerich FP (2005) Expansion of substrate specificity of cytochrome P450 2A6 by random and site-directed mutagenesis. J Biol Chem 280:41090–41100PubMedCrossRefGoogle Scholar
  75. 75.
    Yem DW, Wu HC (1978) Physiological characterization of an Escherichia coli mutant altered in the structure of murein lipoprotein. J Bacteriol 133:1419–1426PubMedGoogle Scholar
  76. 76.
    Yun CH, Yim SK, Kim DH, Ahn T (2006) Functional expression of human cytochrome P450 enzymes in Escherichia coli. Curr Drug Metab 7:411–429PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang J, Marcin C, Shifflet MA, Salmon P, Brix T, Greasham R, Buckland B, Chartrain M (1996) Development of a defined medium fermentation process for physostigmine production by Streptomyces griseofuscus. Appl Microbiol Biotechnol 44:568–575PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Sjef Cornelissen
    • 1
  • Mattijs K. Julsing
    • 1
  • Andreas Schmid
    • 1
  • Bruno Bühler
    • 1
  1. 1.Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical EngineeringTU Dortmund UniversityDortmundGermany

Personalised recommendations