Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters

  • C. Fuentes-Grünewald
  • E. Garcés
  • E. Alacid
  • N. Sampedro
  • S. Rossi
  • J. Camp
Original Paper

Abstract

Two different strains of microalgae, one raphidophyte and one dinoflagellate, were tested under different abiotic conditions with the goal of enhancing lipid production. Whereas aeration was crucial for biomass production, nitrogen deficiency and temperature were found to be the main abiotic parameters inducing the high-level cellular accumulation of neutral lipids. Net neutral lipid production and especially triacylglycerol (TAG) per cell were higher in microalgae (>200% in Alexandrium minutum, and 30% in Heterosigma akashiwo) under treatment conditions (25°C; 330 μM NaNO3) than under control conditions (20°C; 880 μM NaNO3). For both algal species, oil production (free fatty acids plus TAG fraction) was also higher under treatment conditions (57 mg L−1 in A. minutum and 323 mg L−1 in H. akashiwo). Despite the increased production and accumulation of lipids in microalgae, the different conditions did not significantly change the fatty acids profiles of the species analyzed. These profiles consisted of saturated fatty acids (SAFA) and polyunsaturated fatty acids (PUFA) in significant proportions. However, during the stationary phase, the concentrations per cell of some PUFAs, especially arachidonic acid (C20:4n6), were higher in treated than in control algae. These results suggest that the adjustment of abiotic parameters is a suitable and one of the cheapest alternatives to obtain sufficient quantities of microalgal biomass, with high oil content and minimal changes in the fatty acid profile of the strains under consideration.

Keywords

Microalgae Dinoflagellates Raphidophytes Lipids Biofuel Triacylglycerols 

References

  1. 1.
    Acién Fernández FG, Alías CB, García-Malea López MC, Fernández Sevilla JM, Ibáñez González MJ, Gómez RN, Molina Grima E (2003) Assessment of the production of 13C labeled compounds from phototrophic microalgae at laboratory scale. Biomol Eng 20(4–6):149–162PubMedCrossRefGoogle Scholar
  2. 2.
    Alonso DL, Belarbi A-H, Fernandez-Sevilla JM, Rodriguez-Ruiz J, Grima EM (2000) Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornotum. Phytochemistry 54:461–471PubMedCrossRefGoogle Scholar
  3. 3.
    Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 11–16Google Scholar
  4. 4.
    Berdalet E, Peters F, Koumando VL, Roldán C, Guayadol O, Estrada M (2007) Species-specific physiological response of dinoflagellates to quantified small-scale turbulence. J Phycol 43:965–977CrossRefGoogle Scholar
  5. 5.
    Bigogno C, Khozin-Goldberg I, Cohen Z (2002) Accumulation of arachidonic acid-rich triacylglycerols in the microalga Parietochloris incisa (trebuxiophyceae, chlorophyta). Phytochemistry 60(2):135–143PubMedCrossRefGoogle Scholar
  6. 6.
    Blanco A, Moreno J, Del Campo J, Rivas J, Guerrero M (2007) Outdoor cultivation of lutein-rich cells of Muriellopsis sp. In open ponds. Appl Microbiol Biotechnol 73(6):1259–1266PubMedCrossRefGoogle Scholar
  7. 7.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  8. 8.
    Converti A, Casazza AA, Ortiz E, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151CrossRefGoogle Scholar
  9. 9.
    Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68(3):639–642PubMedCrossRefGoogle Scholar
  10. 10.
    Escala M, Rosell-Melé A, Masqué P (2007) Rapid screening of glycerol dialkyl glycerol tetraethers in continental Eurasia samples using HPLC/APCI-ion trap mass spectrometry. Org Geochem 38:161–164CrossRefGoogle Scholar
  11. 11.
    Fu F-X, Zhang Y, Warner ME, Feng Y, Sun J, Hutchins DA (2008) A comparison of future increased CO2 and temperature effects on sympatric Heterosigma akashiwo and Prorocentrum minimum. Harmful Algae 7(1):76–90CrossRefGoogle Scholar
  12. 12.
    Fuentes-Grünewald C, Garcés E, Rossi S, Camp J (2009) Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J Indus Microbiol Biotechnol 36(9):1215–1224CrossRefGoogle Scholar
  13. 13.
    Gallardo-Rodríguez JJ, Mirón AS, Camacho FG, García MC, Belarbi EH, Chisti Y, Grima EM (2009) Causes of shear sensitivity of the toxic dinoflagellate Protoceratium reticulatum. Biotechnol Prog 25(3):792–800. doi:10.1002/btpr.161 PubMedCrossRefGoogle Scholar
  14. 14.
    Garcia Camacho F, Gallardo Rodríguez JJ, Sánchez Mirón A, Cerón García MC, Belarbi EH, Chisti Y, Molina Grima E (2007) Biological significance of toxic marine dinoflagellates. Biotechnol Adv 25:176–194PubMedCrossRefGoogle Scholar
  15. 15.
    Gómez-Brandón M, Lores M, Domínguez J (2008) Comparison of extraction and derivatization methods for fatty acid analysis in solid environmental matrixes. Anal Bioanal Chem 392(3):505–514PubMedCrossRefGoogle Scholar
  16. 16.
    Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuels priority list: a review of the technological challenges. J R Soc Interface 7(46):703–726. doi:10.1098/rsif.2009.0322 PubMedCrossRefGoogle Scholar
  17. 17.
    Grewe C, Griehl C (2008) Time and media-dependent secondary carotenoid accumulation in Haematococcus pluviales. Biotechnol J 3:1232–1244PubMedCrossRefGoogle Scholar
  18. 18.
    Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507CrossRefGoogle Scholar
  19. 19.
    Guillard RRL (1973) Division rates. In: Stein JR (ed) Handbook of phycological methods. I. Culture methods and growth measurements. Cambridge University Press, Cambridge, pp 289–312Google Scholar
  20. 20.
    Guillard RRL (1995) Culture methods In: Hallegraeff GM, Anderson DM, Cembella AD (eds) Manual on harmful marine microalgae. IOC manuals and guides. UNESCO 33:551Google Scholar
  21. 21.
    Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186PubMedCrossRefGoogle Scholar
  22. 22.
    Hsieh C-H, Wu W-T (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100(17):3921–3926PubMedCrossRefGoogle Scholar
  23. 23.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639PubMedCrossRefGoogle Scholar
  24. 24.
    Kornilova O, Rosell-Melé A (2003) Application of microwave-assisted extraction to the analysis of biomarker climate proxies in marine sediments. Org Geochem 34:1517–1523CrossRefGoogle Scholar
  25. 25.
    Kuwata A, Hama T, Takahashi M (1993) Ecophysiological characterization of two life forms, resting spores and resting cells, of a marine planktonic diatom, Chaetoceros pseudocurvisetus, formed under nutrient depletion. Mar Ecol Prog Ser 102:245–255CrossRefGoogle Scholar
  26. 26.
    Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636PubMedCrossRefGoogle Scholar
  27. 27.
    Liang Y, Beardall J, Heraud P (2006) Effect of UV radiation on growth, chlorophyll fluorescence and fatty acids composition of Phaeodactylum tricornotum and Chaetoceros muelleri (Bacillariophyceae). Phycologia 45(6):605–615CrossRefGoogle Scholar
  28. 28.
    Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722PubMedCrossRefGoogle Scholar
  29. 29.
    Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999) The fatty acid and sterol composition of five marine dinoflagellates. J Phycol 35(4):710–720CrossRefGoogle Scholar
  30. 30.
    Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63(2):145–153PubMedCrossRefGoogle Scholar
  31. 31.
    Melis A, Mitra M (2008) Optical properties of microalgae for enhanced biofuels production. Opt Express 16(26)Google Scholar
  32. 32.
    Parker NS, Negri AP, Frampton DMF, Rodolfi L, Tredici MR, Blackburn SI (2002) Growth of the toxic dinoflagellate Alexandrium minutum (dinophyceae) using high biomass culture systems. J Appl Phycol 14(5):313–324CrossRefGoogle Scholar
  33. 33.
    Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez A (2008) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268PubMedCrossRefGoogle Scholar
  34. 34.
    Ruiz J, Antequera T, Andres AI, Petron MJ, Muriel E (2004) Improvement of a solid phase extraction method for analysis of lipid fractions in muscle foods. Anal Chim Acta 520(1–2):201–205CrossRefGoogle Scholar
  35. 35.
    Russel JM, Werne JP (2007) The use of solid phase extraction columns in fatty acids purification. Org Geochem 38:48–51CrossRefGoogle Scholar
  36. 36.
    Sanchez JF, Fernández-Sevilla JM, Acién FG, Cerón MC, Pérez-Parra J, Molina-Grima E (2008) Biomass and lutein productivity of Scenedesmum almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729PubMedCrossRefGoogle Scholar
  37. 37.
    Sullivan JM, Swift E, Donaghay PL, Rines J (2003) Small-scale turbulence affects the division rate and morphology of two red-tide dinoflagellates. Harmful Algae 2:183–199CrossRefGoogle Scholar
  38. 38.
    Takagi M, Karseno, Yoshida T (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J Biosci Bioeng 101(3):223–226PubMedCrossRefGoogle Scholar
  39. 39.
    Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20CrossRefGoogle Scholar
  40. 40.
    Zhekisheva M, Boussiba S, Khozin-Goldberg I, Zarka A, Cohen Z (2002) Accumulation of oleic acid in Haematococcus pluvialis (Chlorophyceae) under nitrogen starvation or high light is correlated with that of astaxanthin esters. J Phycol 38:325–331CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • C. Fuentes-Grünewald
    • 1
    • 2
  • E. Garcés
    • 1
  • E. Alacid
    • 1
  • N. Sampedro
    • 1
  • S. Rossi
    • 2
  • J. Camp
    • 1
  1. 1.Departament de Biología Marina i OceanografíaInstitut de Ciències del Mar, CSICBarcelonaSpain
  2. 2.Institut de Ciència i Tecnologia Ambientals (Universitat Autònoma de Barcelona, UAB)Cerdanyola del Vallés (Barcelona)Spain

Personalised recommendations