Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 38, Issue 12, pp 1961–1967 | Cite as

Engineering Saccharomyces cerevisiae to produce feruloyl esterase for the release of ferulic acid from switchgrass

  • Dominic W. S. WongEmail author
  • Victor J. Chan
  • Sarah B. Batt
  • Gautam Sarath
  • Hans Liao
Original Paper

Abstract

The Aspergillus niger feruloyl esterase gene (faeA) was cloned into Saccharomyces cerevisiae via a yeast expression vector, resulting in efficient expression and secretion of the enzyme in the medium with a yield of ~2 mg/l. The recombinant enzyme was purified to homogeneity by anion-exchange and hydrophobic interaction chromatography. The specific activity was determined to be 8,200 U/μg (pH 6.5, 20°C, 3.5 mM 4-nitrophenyl ferulate). The protein had a correct N-terminal sequence of ASTQGISEDLY, indicating that the signal peptide was properly processed. The FAE exhibited an optimum pH of 6–7 and operated optimally at 50°C using ground switchgrass as the substrate. The yeast clone was demonstrated to catalyze the release of ferulic acid continuously from switchgrass in YNB medium at 30°C. This work represents the first report on engineering yeast for the breakdown of ferulic acid crosslink to facilitate consolidated bioprocessing.

Keywords

Feruloyl esterase Saccharomyces cerevisiae Expression Switchgrass 

Notes

Reference to a company and/or products is only for purposes of information and does not imply approval of recommendation of the product to the exclusion of others that may also be suitable. All programs and services of the US Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

References

  1. 1.
    Akin DE (2007) Grass lignocellulose. Appl Biochem Biotechnol 136–140:3–15CrossRefGoogle Scholar
  2. 2.
    Akin DE, Morrison WH, Rigsby LL, Barton FE, Himmelsbach DS, Hicks KB (2006) Corn stover fractions and bioenergy. Appl Biochem Biotechnol 129–132:104–116PubMedCrossRefGoogle Scholar
  3. 3.
    Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS (2009) Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 27:833–848PubMedCrossRefGoogle Scholar
  4. 4.
    Benoit I, Danchin EGJ, Bleichrodt R-J, de Vries RP (2008) Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 30:387–396PubMedCrossRefGoogle Scholar
  5. 5.
    Bunzel M, Ralph J, Bruning P, Steinhart H (2006) Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. J Agric Food Chem 54:6409–6418PubMedCrossRefGoogle Scholar
  6. 6.
    Castelli LA, Mardon CJ, Strike PM, Azad AA, Macreadie IG (1994) High-level secretion of correctly processed β-lactamase from Saccharomyces cerevisiae using a high-copy-number secretion vector. Gene 142:113–117PubMedCrossRefGoogle Scholar
  7. 7.
    Das NN, Das SC, Butt AS, Roy A (1981) Lignin-xylan ester linkage in jute fiber (Corchorus capsularis). Carbohydr Res 94:73–82CrossRefGoogle Scholar
  8. 8.
    Donaghy JA, McKay AM (1998) Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl Microbiol Biotech 50:257–260CrossRefGoogle Scholar
  9. 9.
    Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141PubMedCrossRefGoogle Scholar
  10. 10.
    Grabber JH, Hatfield RD, Ralph J (1998) Diferulate cross-links impede the enzymatic degradation of non-lignified maize walls. J Sci Food Agric 77:193–200CrossRefGoogle Scholar
  11. 11.
    Grohmann K, Mitchell DJ, Himmel ME, Dale BE, Schroeder HA (1989) The role of ester groups in resistance of plant cell wall polysaccharides to enzymatic hydrolysis. Appl Biochem Biotechnol 20:45–61CrossRefGoogle Scholar
  12. 12.
    Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Fourst TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807PubMedCrossRefGoogle Scholar
  13. 13.
    Huang Z, Dostal L, Rosazza JPN (1993) Microbial transformation of ferulic acid by Saccharomyces cerevisiae and Pseudomonas fluorescens. Appl Environ Microbiol 59:2244–2250PubMedGoogle Scholar
  14. 14.
    Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320PubMedGoogle Scholar
  15. 15.
    Jung H-JG, Shalita-Jones SC (1990) Variation in the extractability of esterified p-coumaric and ferulic acids from forage cell walls. J Agric Food Chem 38:397–402CrossRefGoogle Scholar
  16. 16.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  17. 17.
    Knauf M, Kraus K (2006) Specific yeasts developed for modern ethanol production. Sugar Industry 131:753–758Google Scholar
  18. 18.
    Kroon PA, Williamson G (1996) Release of ferulic acid from sugar-beet pulp by using arabinanase, arabinofuranosidase and an esterase from Aspergillus niger Biotechnol. Appl Biochem 23:263–267Google Scholar
  19. 19.
    Kumagai MH, Shah M, Terashima M, Vrkjan Z, Whitaker JR, Rodriguez RL (1990) Expression and secretion of rice α-amylase by Saccharomyces cerevisiae. Gene 94:209–216PubMedCrossRefGoogle Scholar
  20. 20.
    Macreadie IG, Horaitis O, Verkuylen AJ, Savin KW (1991) Improved shuttle vectors for cloning and high-level Cu2+-mediated expression of foreign genes in yeast. Gene 104:107–111PubMedCrossRefGoogle Scholar
  21. 21.
    Mastihuba V, Kremnicky L, Mastihubova M, Willet JL, Cote GL (2003) A spectrophotometric assay for feruloyl esterases. Anal Biochem 309:96–101CrossRefGoogle Scholar
  22. 22.
    Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96:673–686CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Painter TJ (1983) Residues of D-lyxo-5-hexosulopyranuronic acid in Sphagnum holocellulose, and their role in cross-linking. Carbohydr Res 124:C18–C21CrossRefGoogle Scholar
  25. 25.
    Rosazza JPN, Huang Z, Dostal L, Volm T, Rousseau B (1995) Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15:457–471PubMedCrossRefGoogle Scholar
  26. 26.
    Rouau X, Cheynier V, Surget A, Gloux D, Barron C, Meudec E, Louis-Montero J, Criton M (2003) A dehydrotrimer of ferulic acid from maize bran. Phytochem. 63:899–903CrossRefGoogle Scholar
  27. 27.
    Sarath G, Baird LM, Vogel KP, Mitchell RB (2007) Internode structure and cell wall composition in maturing tillers of switchgrass (Panicum virgatum L.). Bioresource Technol 98:2985–2992CrossRefGoogle Scholar
  28. 28.
    Scalbert A, Monties B, Lallemand J-Y, Guittet E, Rolando C (1985) Ether linkage between phenolic acids and lignin fractions from wheat straw. Phytochemistry 24:1359–1362CrossRefGoogle Scholar
  29. 29.
    Sogaard M, Svensson B (1990) Expression of cDNAs encoding barley α-amylase 1 and 2 in yeast and characterization of the secreted proteins. Gene 94:173–179PubMedCrossRefGoogle Scholar
  30. 30.
    Vardakou M, Katapodis P, Topakas E, Kekos D, Macris BJ, Christakopoulos P (2004) Synergy between enzymes involved in the degradation of insoluble wheat flour arabinoxylan. Innovative Food Sci Emerging Technol 5:107–112CrossRefGoogle Scholar
  31. 31.
    de Vries RP, Michelsen B, Poulsen CH, Kroon PA, van den Heuvel RHH, Faulds CB, Williamson G, van den Hombergh JPTW, Visser J (1997) The faeA genes from Aspergillus niger and Aspergillus tubingensis encode ferulic acid esterases involved in degradation of complex cell wall polysaccharides. Appl Environ Microbiol 63:4638–4644PubMedGoogle Scholar
  32. 32.
    Wang Z, Da Silva N (1993) Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain. Biotechnol Bioengineer 42:95–102CrossRefGoogle Scholar
  33. 33.
    Wong DWS, Batt SB, Robertson GH (2002) Characterization of active barley α-amylase 1 expressed and secreted by Saccharomyces cerevisiae. J Protein Chem 20:619–623CrossRefGoogle Scholar
  34. 34.
    Wong DWS, Batt SB, Lee CC, Wagschal K, Robertson GH (2002) Increased expression and secretion of recombinant a-amylase in Saccharomyces cerevisiae by using glycerol as the carbon source. J Protein Chem 21:419–425PubMedCrossRefGoogle Scholar
  35. 35.
    Wong DWS, Batt SB, Lee CC, Wagschal K, Robertson GH (2005) Characterization of active Lentinula edodes glucoamylase expressed and secreted by Saccharomyces cerevisiae. Protein J 24:455–463PubMedCrossRefGoogle Scholar
  36. 36.
    Wong DWS (2006) Feruloyl esterase. A key enzyme in biomass degradation. Appl Biochem Biotechnol 133:87–112PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag (outside the USA) 2011

Authors and Affiliations

  • Dominic W. S. Wong
    • 1
    Email author
  • Victor J. Chan
    • 1
  • Sarah B. Batt
    • 1
  • Gautam Sarath
    • 2
  • Hans Liao
    • 3
  1. 1.Western Regional Research CenterUSDA-ARSAlbanyUSA
  2. 2.Grain, Forage and Bioenergy Research UnitUSDA-ARSLincolnUSA
  3. 3.OPX BiotechnologiesBoulderUSA

Personalised recommendations