Journal of Industrial Microbiology & Biotechnology

, Volume 38, Issue 11, pp 1809–1820 | Cite as

Simultaneous production and partitioning of heterologous polyketide and isoprenoid natural products in an Escherichia coli two-phase bioprocess

  • Brett A. Boghigian
  • Melissa Myint
  • Jiequn Wu
  • Blaine A. Pfeifer
Original Paper


Natural products have long served as rich sources of drugs possessing a wide range of pharmacological activities. The discovery and development of natural product drug candidates is often hampered by the inability to efficiently scale and produce a molecule of interest, due to inherent qualities of the native producer. Heterologous biosynthesis in an engineering and process-friendly host emerged as an option to produce complex natural products. Escherichia coli has previously been utilized to produce complex precursors to two popular natural product drugs, erythromycin and paclitaxel. These two molecules represent two of the largest classes of natural products, polyketides and isoprenoids, respectively. In this study, we have developed a platform E. coli strain capable of simultaneous production of both product precursors at titers greater than 15 mg l−1. The utilization of a two-phase batch bioreactor allowed for very strong in situ separation (having a partitioning coefficient of greater than 5,000), which would facilitate downstream purification processes. The system developed here could also be used in metagenomic studies to screen environmental DNA for natural product discovery and preliminary production experiments.


Heterologous host Escherichia coli Polyketide Isoprenoid Two-phase bioreactor 



The authors recognize support from the National Institutes of Health (GM085323) and the Milheim Foundation (Grant for Cancer Research No. 2006-17). MM was supported through the Tufts University Summer Scholars program. JW was supported through the Chinese Scholarship Council as a visiting student from East China University of Science and Technology.


  1. 1.
    Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev 30:187–214PubMedCrossRefGoogle Scholar
  2. 2.
    Ajikumar PK, Tyo K, Carlsen S, Mucha O, Phon TH, Stephanopoulos G (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190PubMedCrossRefGoogle Scholar
  3. 3.
    Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330:70–74PubMedCrossRefGoogle Scholar
  4. 4.
    Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563PubMedCrossRefGoogle Scholar
  5. 5.
    Baltz RH (2010) Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 37:759–772PubMedCrossRefGoogle Scholar
  6. 6.
    Besumbes O, Sauret-Gueto S, Phillips MA, Imperial S, Rodriguez-Concepcion M, Boronat A (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of Taxol. Biotechnol Bioeng 88:168–175PubMedCrossRefGoogle Scholar
  7. 7.
    Blanchard S, Thorson JS (2006) Enzymatic tools for engineering natural product glycosylation. Curr Opin Chem Biol 10:263–271PubMedCrossRefGoogle Scholar
  8. 8.
    Boakes S, Oliynyk M, Cortes J, Bohm I, Rudd BA, Revill WP, Staunton J, Leadlay PF (2004) A new modular polyketide synthase in the erythromycin producer Saccharopolyspora erythraea. J Mol Microbiol Biotechnol 8:73–80PubMedCrossRefGoogle Scholar
  9. 9.
    Boghigian BA, Pfeifer BA (2008) Current status, strategies, and potential for the metabolic engineering of heterologous polyketides in Escherichia coli. Biotechnol Lett 30:1323–1330PubMedCrossRefGoogle Scholar
  10. 10.
    Chan YA, Podevels AM, Kevany BM, Thomas MG (2009) Biosynthesis of polyketide synthase extender units. J Nat Prod 26:90–114CrossRefGoogle Scholar
  11. 11.
    Chen Y, Deng W, Wu J, Qian J, Chu J, Zhuang Y, Zhang S, Liu W (2008) Genetic modulation of the overexpression of tailoring genes eryK and eryG leading to the improvement of erythromycin A purity and production in Saccharopolyspora erythraea fermentation. Appl Environ Microbiol 74:1820–1828PubMedCrossRefGoogle Scholar
  12. 12.
    Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14PubMedCrossRefGoogle Scholar
  13. 13.
    Chng C, Lum AM, Vroom JA, Kao CM (2008) A key developmental regulator controls the synthesis of the antibiotic erythromycin in Saccharopolyspora erythraea. Proc Natl Acad Sci USA 105:11346–11351PubMedCrossRefGoogle Scholar
  14. 14.
    Cortes J, Haydock SF, Roberts GA, Bevitt DJ, Leadlay PF (1990) An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348:176–178PubMedCrossRefGoogle Scholar
  15. 15.
    Cunningham FX Jr, Sun Z, Chamovitz D, Hirschberg J, Gantt E (1994) Molecular structure and enzymatic function of lycopene cyclase from the cyanobacterium Synechococcus sp strain PCC7942. Plant Cell 6:1107–1121PubMedCrossRefGoogle Scholar
  16. 16.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645PubMedCrossRefGoogle Scholar
  17. 17.
    Denis JN, Greene AE, Guenard D, Gueritte-Voegelein F, Mangatal L, Potier P (1988) A highly efficient, practical approach to natural taxol. J Am Chem Soc 110:5917–5919CrossRefGoogle Scholar
  18. 18.
    Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252:675–679PubMedCrossRefGoogle Scholar
  19. 19.
    Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426PubMedCrossRefGoogle Scholar
  20. 20.
    Engels B, Dahm P, Jennewein S (2008) Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production. Metab Eng 10:201–206PubMedCrossRefGoogle Scholar
  21. 21.
    Eustaquio AS, McGlinchey RP, Liu Y, Hazzard C, Beer LL, Florova G, Alhamadsheh MM, Lechner A, Kale AJ, Kobayashi Y, Reynolds KA, Moore BS (2009) Biosynthesis of the salinosporamide A polyketide synthase substrate chloroethylmalonyl-coenzyme A from S-adenosyl-l-methionine. Proc Natl Acad Sci USA 106:12295–12300PubMedCrossRefGoogle Scholar
  22. 22.
    Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496PubMedCrossRefGoogle Scholar
  23. 23.
    Gokhale RS, Tsuji SY, Cane DE, Khosla C (1999) Dissecting and exploiting intermodular communication in polyketide synthases. Science 284:482–485PubMedCrossRefGoogle Scholar
  24. 24.
    Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249PubMedCrossRefGoogle Scholar
  25. 25.
    Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4:564–573PubMedCrossRefGoogle Scholar
  26. 26.
    Horwitz SB (1994) How to make taxol from scratch. Nature 367:593–594PubMedCrossRefGoogle Scholar
  27. 27.
    Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531PubMedCrossRefGoogle Scholar
  28. 28.
    Kao CM, Katz L, Khosla C (1994) Engineered biosynthesis of a complete macrolactone in a heterologous host. Science 265:509–512PubMedCrossRefGoogle Scholar
  29. 29.
    Ketchum RE, Gibson DM, Croteau RB, Shuler ML (1999) The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng 62:97–105PubMedCrossRefGoogle Scholar
  30. 30.
    Khosla C, Keasling JD (2003) Metabolic engineering for drug discovery and development. Nat Rev Drug Discov 2:1019–1025PubMedCrossRefGoogle Scholar
  31. 31.
    Kodumal SJ, Patel KG, Reid R, Menzella HG, Welch M, Santi DV (2004) Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci USA 101:15573–15578PubMedCrossRefGoogle Scholar
  32. 32.
    Koepp AE, Hezari M, Zajicek J, Vogel BS, LaFever RE, Lewis NG, Croteau R (1995) Cyclization of geranylgeranyl diphosphate to taxa-4(5), 11(12)-diene is the committed step of taxol biosynthesis in Pacific yew. J Biol Chem 270:8686–8690PubMedCrossRefGoogle Scholar
  33. 33.
    Komatsu M, Uchiyama T, Omura S, Cane DE, Ikeda H (2010) Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism. Proc Natl Acad Sci USA 107:2646–2651PubMedCrossRefGoogle Scholar
  34. 34.
    Kovacs K, Zhang L, Linforth RS, Whittaker B, Hayes CJ, Fray RG (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5), 11(12)-diene] in transgenic tomato fruit. Transgenic Res 16:121–126PubMedCrossRefGoogle Scholar
  35. 35.
    Li JW, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165PubMedCrossRefGoogle Scholar
  36. 36.
    Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583PubMedCrossRefGoogle Scholar
  37. 37.
    MacNeil IA, Tiong CL, Minor C, August PR, Grossman TH, Loiacono KA, Lynch BA, Phillips T, Narula S, Sundaramoorthi R, Tyler A, Aldredge T, Long H, Gilman M, Holt D, Osburne MS (2001) Expression and isolation of antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol 3:301–308PubMedGoogle Scholar
  38. 38.
    Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21:796–802PubMedCrossRefGoogle Scholar
  39. 39.
    Masters M (1977) The frequency of P1 transduction of the genes of Escherichia coli as a function of chromosomal position: preferential transduction of the origin of replication. Mol Gen Genet 155:197–202PubMedCrossRefGoogle Scholar
  40. 40.
    Menzella HG, Reeves CD (2007) Combinatorial biosynthesis for drug development. Curr Opin Microbiol 10:238–245PubMedCrossRefGoogle Scholar
  41. 41.
    Menzella HG, Reid R, Carney JR, Chandran SS, Reisinger SJ, Patel KG, Hopwood DA, Santi DV (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176PubMedCrossRefGoogle Scholar
  42. 42.
    Moore BS, Hertweck C (2002) Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep 19:70–99PubMedCrossRefGoogle Scholar
  43. 43.
    Neumann CS, Fujimori DG, Walsh CT (2008) Halogenation strategies in natural product biosynthesis. Chem Biol 15:99–109PubMedCrossRefGoogle Scholar
  44. 44.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477PubMedCrossRefGoogle Scholar
  45. 45.
    Newman JD, Marshall J, Chang M, Nowroozi F, Paradise E, Pitera D, Newman KL, Keasling JD (2006) High-level production of amorpha-4, 11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli. Biotechnol Bioeng 95:684–691PubMedCrossRefGoogle Scholar
  46. 46.
    Nguyen KT, Ritz D, Gu JQ, Alexander D, Chu M, Miao V, Brian P, Baltz RH (2006) Combinatorial biosynthesis of novel antibiotics related to daptomycin. Proc Natl Acad Sci USA 103:17462–17467PubMedCrossRefGoogle Scholar
  47. 47.
    Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Guy RK, Claiborne CF, Renaud J, Couladouros EA, Paulvannan K et al (1994) Total synthesis of taxol. Nature 367:630–634PubMedCrossRefGoogle Scholar
  48. 48.
    Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060PubMedCrossRefGoogle Scholar
  49. 49.
    Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nat Biotechnol 25:447–453PubMedCrossRefGoogle Scholar
  50. 50.
    Pettit RK (2009) Mixed fermentation for natural product drug discovery. Appl Microbiol Biotechnol 83:19–25PubMedCrossRefGoogle Scholar
  51. 51.
    Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790–1792PubMedCrossRefGoogle Scholar
  52. 52.
    Pieper R, Luo G, Cane DE, Khosla C (1995) Cell-free synthesis of polyketides by recombinant erythromycin polyketide synthases. Nature 378:263–266PubMedCrossRefGoogle Scholar
  53. 53.
    Pitera DJ, Paddon CJ, Newman JD, Keasling JD (2007) Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng 9:193–207PubMedCrossRefGoogle Scholar
  54. 54.
    Quadri LE, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT (1998) Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:1585–1595PubMedCrossRefGoogle Scholar
  55. 55.
    Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM (2007) Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng 9:293–303PubMedCrossRefGoogle Scholar
  56. 56.
    Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943PubMedCrossRefGoogle Scholar
  57. 57.
    Rodriguez E, Gramajo H (1999) Genetic and biochemical characterization of the α and β components of a propionyl-CoA carboxylase complex of Streptomyces coelicolor A3(2). Microbiology 145(Pt 11):3109–3119PubMedGoogle Scholar
  58. 58.
    Salas JA, Mendez C (2007) Engineering the glycosylation of natural products in actinomycetes. Trends Microbiol 15:219–232PubMedCrossRefGoogle Scholar
  59. 59.
    Skeel RT (1999) Handbook of cancer chemotherapy. Lippincott Williams & Wilkins, Philadelphia, PA, USAGoogle Scholar
  60. 60.
    Smith RL, Bungay HR, Pittenger RC (1962) Growth-biosynthesis relationships in erythromycin fermentation. Appl Microbiol 10:293–296PubMedGoogle Scholar
  61. 61.
    Tang Y, Kim CY, Mathews II, Cane DE, Khosla C (2006) The 2.7-Å crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci USA 103:11124–11129PubMedCrossRefGoogle Scholar
  62. 62.
    van Zyl WH, Lynd LR, den Haan R, McBride JE (2007) Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:205–235PubMedGoogle Scholar
  63. 63.
    Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41:4–10PubMedCrossRefGoogle Scholar
  64. 64.
    Wang Y, Boghigian BA, Pfeifer BA (2007) Improving heterologous polyketide production in Escherichia coli by overexpression of an S-adenosylmethionine synthetase gene. Appl Microbiol Biotechnol 77:367–373PubMedCrossRefGoogle Scholar
  65. 65.
    Wang Y, Zhang S (2008) High-frequency transformation of the industrial erythromycin-producing bacterium Saccharopolyspora erythraea. Biotechnol Lett 30:357–361PubMedCrossRefGoogle Scholar
  66. 66.
    Weissman KJ, Leadlay PF (2005) Combinatorial biosynthesis of reduced polyketides. Nat Rev Microbiol 3:925–936PubMedCrossRefGoogle Scholar
  67. 67.
    Wu J, Boghigian BA, Myint M, Zhang H, Zhang S, Pfeifer BA (2010) Construction and performance of heterologous polyketide-producing K-12- and B-derived Escherichia coli. Lett Appl Microbiol 51:196–204PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Brett A. Boghigian
    • 1
  • Melissa Myint
    • 1
  • Jiequn Wu
    • 1
    • 2
  • Blaine A. Pfeifer
    • 1
  1. 1.Department of Chemical and Biological Engineering, Science and Technology CenterTufts UniversityMedfordUSA
  2. 2.State Key Laboratory of Bioreactor Engineering, National Engineering Research Center for BiotechnologyEast China University of Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations