Advertisement

Alkaliphilic bacteria: applications in industrial biotechnology

  • Indira P. SarethyEmail author
  • Yashi Saxena
  • Aditi Kapoor
  • Manisha Sharma
  • Sanjeev K. Sharma
  • Vandana Gupta
  • Sanjay Gupta
Review

Abstract

Alkaliphiles are interesting groups of extremophilic organisms that thrive at pH of 9.0 and above. Many of their products, in particular enzymes, have found widespread applications in industry, primarily in the detergent and laundry industries. While the enzymes have been a runaway success from the industrial point of view, many more products have been reported from alkaliphiles such as antibiotics and carotenoids. Less known are their potential for degradation of xenobiotics. They also play a key role in biogeocycling of important inorganic compounds. This review provides an insight into the huge diversity of alkaliphilic bacteria, the varied products obtained from them, and the need for further investigations on these interesting bacteria.

Keywords

Alkaliphile Enzyme Detergents Food industry Biodegradation Chemolithotrophy 

Notes

Acknowledgments

The authors are very grateful to Jaypee Institute of Information Technology, NOIDA, for providing necessary facilities and infrastructure support.

Conflict of interest

The authors declare that no conflicts of interest exist.

References

  1. 1.
    Agrawal PB, Nierstrasz VA, Klug-Santner BG, Gübitz GM, Lenting HB, Warmoeskerken MM (2007) Wax removal for accelerated cotton scouring with alkaline pectinase. Biotechnol J 2(3):306–315PubMedCrossRefGoogle Scholar
  2. 2.
    Ahlawat S, Mandhan RP, Dhiman SS, Kumar R, Sharma J (2008) Potential application of alkaline pectinase from Bacillus subtilis SS in pulp and paper industry. Appl Biochem Biotechnol 149(3):287–293PubMedCrossRefGoogle Scholar
  3. 3.
    Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553CrossRefGoogle Scholar
  4. 4.
    Ahmad A, Senapati S, Khan MI, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalitolerant actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  5. 5.
    Ahmed EH, Raghavendra T, Madamwar D (2010) An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresour Technol 101(10):3628–3634PubMedCrossRefGoogle Scholar
  6. 6.
    Aizawa T, Urai M, Iwabuchi N, Nakajima M, Sunairi M (2010) Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis). Int J Syst Evol Microbiol 60:61–66PubMedCrossRefGoogle Scholar
  7. 7.
    Allgood GS, Perry JJ (1986) Characterization of a manganese-containing catalase from the obligate thermophile Thermoleophilum album. J Bacteriol 168(2):563–567PubMedGoogle Scholar
  8. 8.
    Aloulou A, Rodriguez JA, Puccinelli D, Mouz N, Leclaire J, Leblond Y, Carrière F (2007) Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta 1771:228–237PubMedGoogle Scholar
  9. 9.
    Amorim AM, Gasques MD, Andreaus J, Scharf M (2002) The application of catalase for the elimination of hydrogen peroxide residues after bleaching of cotton fabrics. An Acad Bras Cienc 74(3):433–436PubMedCrossRefGoogle Scholar
  10. 10.
    Anish R, Rahman MS, Rao M (2007) Application of cellulases from an alkalothermophilic Thermomonospora sp. in biopolishing of denims. Biotechnol Bioeng 96(1):48–56PubMedCrossRefGoogle Scholar
  11. 11.
    Anwar A, Saleemuddin M (1998) Alkaline proteases: a review. Bioresour Technol 64:175–183CrossRefGoogle Scholar
  12. 12.
    Aono R, Horikoshi K (1991) Carotenes produced by alkaliphilic yellow pigmented strains of Bacillus. Agric Biol Chem 55:2643–2645Google Scholar
  13. 13.
    Ara K, Igarashi K, Saeki K, Kawai S, Ito S (1992) Purification and some properties of an alkaline pullulanase from alkaliphilic Bacillus sp. KSM-1876. Biosci Biotechnol Biochem 56:62–65CrossRefGoogle Scholar
  14. 14.
    Ara K, Saeki K, Igarashi K, Takaiwa M, Uemura T, Hagihara H, Kawai S, Ito S (1995) Purification and characterization of an alkaline amylopullulanase with both α-1, 4 and α-1, 6 hydrolytic activity from alkalophilic Bacillus sp. KSM-1378. Biochim Biophys Acta 1243(3):315–324PubMedGoogle Scholar
  15. 15.
    Arikan B (2008) Highly thermostable, thermophilic, alkaline, SDS and chelator resistant amylase from a thermophilic Bacillus sp. isolate A3–15. Bioresour Technol 99(8):3071–3076PubMedCrossRefGoogle Scholar
  16. 16.
    Arvidson SO (1983) Extracellular enzymes from Staphylococcus aureus. In: Easmon CSF, Adlam C (eds) Staphylococci and staphylococcal infections. Academic Press, London, pp 745–808Google Scholar
  17. 17.
    Atanasova N, Kitayska T, Yankov D, Safarikova M, Tonkova A (2009) Cyclodextrin glucanotransferase production by cell biocatalysts of alkaliphilic bacilli. Biochem Eng J 46(3):278–285CrossRefGoogle Scholar
  18. 18.
    Atanasova N, Petrova P, Ivanova V, Yankov D, Vassileva A, Tonkova A (2008) Isolation of novel alkaliphilic Bacillus strains for cyclodextrin glucanotransferase production. Appl Biochem Biotechnol 149:155–167PubMedCrossRefGoogle Scholar
  19. 19.
    Azeri C, Tamer AU, Oskay M (2010) Thermoactive cellulase-free xylanase production from alkaliphilic Bacillus strains using various agro-residues and their potential in biobleaching of kraft pulp. Afr J Biotechnol 9(1):63–72Google Scholar
  20. 20.
    Bai Y, Wang J, Zhang Z, Yang P, Shi P, Luo H, Meng K, Huang H, Yao B (2010) A new xylanase from thermoacidophilic Alicyclobacillus sp. A4 with broad-range pH activity and pH stability. J Ind Microbiol Biotechnol 37(2):187–194PubMedCrossRefGoogle Scholar
  21. 21.
    Bajpai P, Bajpai PK (1998) Deinking with enzymes: a review. Tappi J 81(12):111–117Google Scholar
  22. 22.
    Ballschmiter M, Armbrecht M, Ivanova K, Antranikian G, Liebl W (2005) AmyA, an α-amylase with β-cyclodextrin-forming activity, and AmyB from the thermoalkaliphilic organism Anaerobranca gottschalkii: two α-amylases adapted to their different cellular localizations. Appl Environ Microbiol 71(7):3709–3715PubMedCrossRefGoogle Scholar
  23. 23.
    Banciu H, Sorokin DY, Galinski EA, Muyzer G, Kleerebezem R, Kuenen JG (2004) Thialkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic, facultatively alkaliphilic, and extremely salt-tolerant, sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8(4):325–334PubMedCrossRefGoogle Scholar
  24. 24.
    Bansode VB, Bajekal SS (2006) Characterization of chitinases from microorganisms isolated from Lonar Lake. Indian J Biotechnol 5:357–363Google Scholar
  25. 25.
    Baudin C, Pean C, Perly B, Goselin P (2000) Inclusion of organic pollutants in cyclodextrin and derivatives. Int J Environ Anal Chem 77:233–242CrossRefGoogle Scholar
  26. 26.
    Beg K, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338PubMedCrossRefGoogle Scholar
  27. 27.
    Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15(3–4):583–620PubMedCrossRefGoogle Scholar
  28. 28.
    Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383PubMedCrossRefGoogle Scholar
  29. 29.
    Bhushan B, Hoondal GS (1998) Isolation, purification and properties of a thermostable chitinase from an alkalophilic Bacillus sp. BG-11. Biotechnol Lett 20:157–159CrossRefGoogle Scholar
  30. 30.
    Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp nov, and Bacillus selenitireducens, sp nov: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171(5):19–30CrossRefGoogle Scholar
  31. 31.
    Boldareva EN, Akimov VN, Boĭchenko VA, Stadnichuk IN, Moskalenko AA, Makhneva ZK, Gorlenko VM (2008) Rhodobaca barguzinensis sp. nov., a new alkaliphilic purple nonsulfur bacterium isolated from a soda lake of the Barguzin Valley (Buryat Republic, Eastern Siberia). Mikrobiologiia 77(2):241–254PubMedGoogle Scholar
  32. 32.
    Bonilha PRM, Menocci V, Goulart AJ, Polizeli MLTM, Monti R (2006) Cyclodextrin glycosyltransferase from Bacillus licheniformis: optimization of production and its properties. Braz J Microbiol 37(3):317–323CrossRefGoogle Scholar
  33. 33.
    Bornscheuer UT, Kazlauskas RJ (2006) Hydrolases in organic synthesis— regio- and stereoselective biotransformations, 2nd edn. Wiley-VCH, WeinheimGoogle Scholar
  34. 34.
    Boyer EW, Ingle MB (1972) Extracellular alkaline amylase from a Bacillus species. J Bacteriol 110:992–1000PubMedGoogle Scholar
  35. 35.
    Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750PubMedCrossRefGoogle Scholar
  36. 36.
    Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116CrossRefGoogle Scholar
  37. 37.
    Brioukhanov AL, Netrusov AI, Eggen RI (2006) The catalase and superoxide dismutase genes are transcriptionally up-regulated upon oxidative stress in the strictly anaerobic archaeon Methanosarcina barkeri. Microbiology 152:1671–1677PubMedCrossRefGoogle Scholar
  38. 38.
    Budzikiewicz H (2001) Siderophore-antibiotic conjugates used as Trojan horses against Pseudomonas aeruginosa. Curr Top Med Chem 1(1):73–82PubMedCrossRefGoogle Scholar
  39. 39.
    Burhan A, Nisa U, Gökhan C, Ömer C, Ashabil A, Osman G (2003) Enzymatic properties of a novel thermostable, thermophilic, alkaline and chelator resistant amylase from an alkaliphilic Bacillus sp. isolate ANT–6. Process Biochem 38:1397–1403CrossRefGoogle Scholar
  40. 40.
    Burkert JFM, Maugeri F, Rodrigues MI (2004) Optimization of extracellular lipase production by Geotrichum sp. using factorial design. Bioresour Technol 91:77–84PubMedCrossRefGoogle Scholar
  41. 41.
    Buschmann HJ, Schollmeyer E (2002) Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci 53:185–191PubMedGoogle Scholar
  42. 42.
    Cao J, Zheng L, Chen S (1992) Screening of pectinase producer from alkalophilic bacteria and study on its potential application in degumming of ramie. Enzyme Microb Technol 14:1013–1016CrossRefGoogle Scholar
  43. 43.
    Cao X, Jin Z, Wang X, Chen F (2005) A novel cyclodextrin glycosyltransferase from an alkalophilic Bacillus species: purification and characterization. Food Res Int 38(3):309–314CrossRefGoogle Scholar
  44. 44.
    Charoensakdi R, Murakami S, Aoki K, Rimphanitchayakit V, Limpaseni T (2007) Cloning and expression of cyclodextrin glycosyltransferase gene from Paenibacillus sp. T16 isolated from hot spring soil in northern Thailand. J Biochem Mol Biol 40(3):333–340PubMedCrossRefGoogle Scholar
  45. 45.
    Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208PubMedCrossRefGoogle Scholar
  46. 46.
    Chelikani P, Ramana T, Radhakrishnan TM (2005) Catalase: a repertoire of unusual features. Ind J Clin Biochem 20(2):131–135CrossRefGoogle Scholar
  47. 47.
    Chincholkar SB, Chaudhari BL, Rane MR (2004) Microbial siderophore: a state of art. In: Varma A, Chincholkar SB (eds) Soil biology, microbial siderophores, vol 12. Springer, Berlin Heidelberg New York, pp 233–242. doi: 10.1007/978-3-540-71160-5_12
  48. 48.
    Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23PubMedCrossRefGoogle Scholar
  49. 49.
    Couto GH, Glogauer A, Faoro H, Chubatsu LS, Souza EM, Pedrosa FO (2010) Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet Mol Res 9(1):514–523PubMedCrossRefGoogle Scholar
  50. 50.
    d’Hugues D, Norris PR, Hallberg KB, Sánchez F, Langwaldt J, Grotowski A, Chmielewski T, Groudev S (2008) Bioshale consortium. Bioshale FP6 European project: exploiting black shale ores using biotechnologies? Miner Eng 21(1):111–120CrossRefGoogle Scholar
  51. 51.
    Dandavate V, Jinjala J, Keharia H, Madamwar D (2009) Production, partial purification and characterization of organic solvent tolerant lipase from Burkholderia multivorans V2 and its application for ester synthesis. Bioresour Technol 100(13):3374–3381PubMedCrossRefGoogle Scholar
  52. 52.
    Dart J (1996) Contact lens and prosthesis infections. In: Tasman W, Jaeger EA (eds) Duane’s foundations of clinical ophthalmology. Lippincott-Raven, New YorkGoogle Scholar
  53. 53.
    Dastager GS, Agasar D, Pandey A (2009) Production and partial purification of α-amylase from a novel isolate Streptomyces gulbargensis. J Ind Microbiol Biotechnol 36:189–194CrossRefGoogle Scholar
  54. 54.
    Davies DJG, Anthony Y, Meakin BJ, Kilvington S, Anger CB (1990) Evaluation of the anti-acanthamoebal activity of five contact lens disinfectants. ICLC 17:14–20Google Scholar
  55. 55.
    Davies GJ, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3:853–859PubMedCrossRefGoogle Scholar
  56. 56.
    de Carvalho CCCR, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8(3):705–727PubMedCrossRefGoogle Scholar
  57. 57.
    de Oliveira AN, de Oliveira LA, Andrade JS (2010) Partial characterization of amylases of two indigenous central Amazonian Rhizobia strains. Braz Arch Biol Techn 53(1):35–45CrossRefGoogle Scholar
  58. 58.
    de Oliveira PL, Duarte MCT, Ponezi AN, Durrant LR (2009) Use of Bacillus pumilus CBMAI 0008 and Paenibacillus sp. CBMAI 868 for colour removal from paper mill effluent. Braz J Microbiol 40(2):354–357CrossRefGoogle Scholar
  59. 59.
    Dheeman DS, Frias JM, Henehan GTM (2010) Influence of cultivation conditions on the production of a thermostable extracellular lipase from Amycolatopsis mediterranei DSM 43304. J Ind Microbiol Biot 37(1):1–17CrossRefGoogle Scholar
  60. 60.
    Dietera A, Hamm A, Fiedler HP, Goodfellow M, Muller WE, Brun R, Bringmann G (2003) Pyrocoll, an antibiotic, antiparasitic and antitumor compound produced by a novel alkaliphilic Streptomyces strain. J Antibiot 56(7):639–646PubMedGoogle Scholar
  61. 61.
    Ding P, Schous CE, Marvin J (2008) Design and synthesis of a novel protected mixed ligand siderophore. Tetrahedron Lett 49(14):2306–2310CrossRefGoogle Scholar
  62. 62.
    Ding ZG, Li MG, Zhao JY, Ren J, Huang R, Xie MJ, Cui XL, Zhu HJ, Wen ML (2010) Naphthospironone a: an unprecedented and highly functionalized polycyclic metabolite from an alkaline mine waste extremophile. Chemistry 16(13):3902–3905PubMedGoogle Scholar
  63. 63.
    D’Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K (2010) Siderophores from neighboring organisms promote the growth of uncultured bacteria. Chem Biol 17(3):254–264PubMedCrossRefGoogle Scholar
  64. 64.
    Dutta S, Ray L (2009) Production and characterization of an alkaline thermostable crude lipase from an isolated strain of Bacillus cereus C7. Appl Biochem Biotechnol 159(1):142–154PubMedCrossRefGoogle Scholar
  65. 65.
    Eva CMJ, Bernhardsdotter JD, Ng OK, Garriott ML, Pusey ML (2005) Enzymic properties of an alkaline chelator-resistant α-amylase from an alkaliphilic Bacillus sp. isolate L1711. Process Biochem 40:2401–2408CrossRefGoogle Scholar
  66. 66.
    Fang Y, Lu Y, Lu F, Bie X, Zhao H, Wang Y, Lu Z (2009) Improvement of alkaline lipase from Proteus vulgaris T6 by directed evolution. Enzyme Microb Tech 44(2):84–88CrossRefGoogle Scholar
  67. 67.
    Fogarty WM, Ward PO (1974) Pectinases and pectic polysaccharides. Prog Ind Microbiol 13:61–119PubMedGoogle Scholar
  68. 68.
    Fujita Y, Tsubouchi H, Inagi Y, Tomita K, Ozaki A, Nakamura K (1990) Purification and properties of cyclodextrin glycosyltransferase from Bacillus sp. AL-6. J Ferment Bioeng 70:150–154CrossRefGoogle Scholar
  69. 69.
    Fukumori F, Kudo T, Horikoshi K (1985) Purification and properties of a cellulase from alkalophilic Bacillus sp. no. 1139. J Gen Microbiol 131:3339–3345Google Scholar
  70. 70.
    Gademann K (2007) Cyanobacterial natural products for the inhibition of biofilm formation and biofouling. Chimia 61:373–377CrossRefGoogle Scholar
  71. 71.
    Gascoyne DJ, Connor JA, Bull AT (1991) Isolation of bacteria producing siderophores under alkaline conditions. Appl Microbiol Biotechnol 36:130–135CrossRefGoogle Scholar
  72. 72.
    Gascoyne DJ, Connor JA, Bull AT (1991) Capacity of siderophore-producing alkalophilic bacteria to accumulate iron, gallium and aluminum. Appl Microbiol Biotechnol 36:136–141CrossRefGoogle Scholar
  73. 73.
    Gessesse A (1998) Purification and properties of two thermostable alkaline xylanases from an alkaliphilic Bacillus sp. Appl Environ Microbiol 64:3533–3535PubMedGoogle Scholar
  74. 74.
    Giridhara PV, Chandra TS (2010) Production of novel halo-alkali-thermo-stable xylanase by a newly isolated moderately halophilic and alkali-tolerant Gracilibacillus sp. TSCPVG. Process Biochem 45(10):1730–1737CrossRefGoogle Scholar
  75. 75.
  76. 76.
    Godinho A, Bhosle S (2008) Carotenes produced by alkaliphilic orange-pigmented strain of Microbacterium arborescens—AGSB isolated from coastal sand dunes. Indian J Mar Sci 37(3):207–312Google Scholar
  77. 77.
    Gorlenko V, Tsapin A, Namsaraev Z, Teal T, Tourova T, Engler D, Mielke R, Nealson K (2004) Anaerobranca californiensis sp nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake. Int J Syst Evol Microbiol 54:739–743PubMedCrossRefGoogle Scholar
  78. 78.
    Grant WD, Tindall WJ (1986) The alkaline saline environment. In: Herbert TA, Codd GA (eds) Microbes in extreme environments. Academic Press, London, pp 25–54Google Scholar
  79. 79.
    Gudelj M, Fruhwirth GO, Paar A, Lottspeich F, Robra KH, Cavaco-Paulo A, Gübitz GM (2001) A catalase-peroxidase from a newly isolated thermoalkaliphilic Bacillus sp. with potential for the treatment of textile bleaching effluents. Extremophiles 5:423–429PubMedCrossRefGoogle Scholar
  80. 80.
    Guo R, Ding M, Zhang SL, Xu GJ, Zhao FK (2008) Molecular cloning and characterization of two novel cellulase genes from the mollusk Ampullaria crossean. J Comp Physiol 178(2):209–215Google Scholar
  81. 81.
    Gupta R, Beg QK, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol 59:15–32PubMedCrossRefGoogle Scholar
  82. 82.
    Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781PubMedCrossRefGoogle Scholar
  83. 83.
    Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33PubMedCrossRefGoogle Scholar
  84. 84.
    Hagihara H, Igarashi K, Hayashi Y, Endo K, Ikawa-Kitayama K, Ozaki K, Kawai S, Ito S (2001) Novel alpha-amylase that is highly resistant to chelating reagents and chemical oxidants from the alkaliphilic Bacillus isolate KSM-K38. Appl Environ Microbiol 67(4):1744–1750PubMedCrossRefGoogle Scholar
  85. 85.
    Hakamada Y, Endo K, Takizawa S, Kobayashi T, Shirai T, Yamane T, Ito S (2002) Enzymatic properties, crystallization and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochim Biophys Acta 1570:174–180PubMedGoogle Scholar
  86. 86.
    Hamana K, Niitsu M (1999) Production of 2-phenylethylamine by decarboxylation of l-phenylalanine in alkaliphilic Bacillus cohnii. J Gen Appl Microbiol 45(4):149–153PubMedCrossRefGoogle Scholar
  87. 87.
    Hamasaki N, Shirai S, Niitsu M, Kakinuma K, Oshima T (1993) An alkalophilic Bacillus sp. produces 2-phenylethylamine. Appl Environ Microbiol 59:2720–2722PubMedGoogle Scholar
  88. 88.
    Hashim SO, Delgado OD, Martínez MA, Hatti-Kaul R, Mulaa FJ, Mattiasson B (2005) Alkaline active maltohexaose-forming α-amylase from Bacillus halodurans LBK 34. Enzyme Microb Technol 36(1):139–146CrossRefGoogle Scholar
  89. 89.
    Hatada Y, Igarashi K, Ozaki K, Ara K, Hitomi J, Kobayashi T, Kawai S, Watabe T, Ito S (1996) Amino acid sequence and molecular structure of an alkaline amylopullulanase from Bacillus that hydrolyzes alpha-1, 4 and alpha-1, 6 linkages in polysaccharides at different active sites. J Biol Chem 271(39):24075–24083PubMedCrossRefGoogle Scholar
  90. 90.
    Hatada Y, Saito K, Koike K, Yoshimatsu T, Ozawa T, Kobayashi T, Ito S (2000) Deduced amino-acid sequence and possible catalytic residues of a novel pectate lyase from an alkaliphilic strain of Bacillus. Eur J Biochem 267:2268–2275PubMedCrossRefGoogle Scholar
  91. 91.
    Hicks DB (1995) Purification of three catalase isozymes from facultatively alkaliphilic Bacillus firmus OF4. Biochim Biophys Acta 1229(3):347–355PubMedCrossRefGoogle Scholar
  92. 92.
    Hillenbrand T (1999) Die Abwassersituation in der deutschen Papier-, Textil- und Lederindustrie. Gwf Wasser Abwasser 140(4):267–273Google Scholar
  93. 93.
    Hirano K, Ishihara T, Ogasawara S, Maeda H, Abe K, Nakajima T, Yamagata Y (2006) Molecular cloning and characterization of a novel γ-CGTase from alkalophilic Bacillus sp. Appl Microbiol Biotechnol 70:193–201PubMedCrossRefGoogle Scholar
  94. 94.
    Hirasawa K, Uchimura K, Kashiwa M, Grant WD, Ito S, Kobayashi T, Horikoshi K (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Van Leeuwenhoek 89(2):211–219PubMedCrossRefGoogle Scholar
  95. 95.
    Hirata Y, Ito H, Furuta T, Ikuta K, Sakudo A (2010) Degradation and destabilization of abnormal prion protein using alkaline detergents and proteases. Int J Mol Med 25(2):267–270PubMedGoogle Scholar
  96. 96.
    Holden B (1990) A report card on hydrogen peroxide for contact lens disinfection. CLAO J 16:S61–S64PubMedGoogle Scholar
  97. 97.
    Hoondal GS, Tiwari RP, Tewari R, Dahiya N, Beg QK (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59:409–418PubMedCrossRefGoogle Scholar
  98. 98.
    Horchani H, Mosbah H, Salem NB, Gargouri Y, Sayari A (2009) Biochemical and molecular characterisation of a thermoactive, alkaline and detergent-stable lipase from a newly isolated Staphylococcus aureus strain. J Mol Catal B-Enzym 56(4):237–245CrossRefGoogle Scholar
  99. 99.
    Horikoshi K, Atsukawa Y (1973) Xylanase produced by alkalophilic Bacillus no C-59-2. Agric Biol Chem 37:2097–2103Google Scholar
  100. 100.
    Horikoshi K, Nakao M, Kurono Y, Sashihara N (1984) Cellulases of an alkalophilic Bacillus strain isolated from soil. Can J Microbiol 30:774–779CrossRefGoogle Scholar
  101. 101.
    Horikoshi K (1971) Production of alkaline enzymes by alkalophilic microorganisms. I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 35:1407–1414Google Scholar
  102. 102.
    Horikoshi K (1971) Production of alkaline enzymes by alkalophilic microorganisms. II. Alkaline amylase produced by Bacillus No. A-40–2. Agric Biol Chem 35:1783–1791Google Scholar
  103. 103.
    Horikoshi K (1972) Production of alkaline enzymes by alkalophilic microorganisms. III. Alkaline pectinase of Bacillus no. P-4-N. Agric Biol Chem 36:285–293Google Scholar
  104. 104.
    Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63(4):735–750PubMedGoogle Scholar
  105. 105.
    Huertas MJ, Luque-Almagro VM, Martinez-Luque M, Blasco R, Moreno-Vivian C, Castillo F, Roldan MD (2006) Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: Role of siderophores. Biochem Soc Trans 34(1):152–155PubMedCrossRefGoogle Scholar
  106. 106.
    Hughes R, Kilvington S (2001) Comparison of hydrogen peroxide contact lens disinfection systems and solutions against Acanthamoeba polyphaga. Antimicrob Agents Chemother 45(7):2038–2043Google Scholar
  107. 107.
    Ibrahim HM, Yusoff WMW, Hamid AA, Illias RM, Hassan O, Omar O (2005) Optimization of medium for the production of β-cyclodextrin glucanotransferase using central composite design (CCD). Process Biochem 40(2):753–758CrossRefGoogle Scholar
  108. 108.
    Igarashi K, Hatada Y, Hagihara H, Saeki K, Takaiwa M, Uemura T (1998) Enzymatic properties of a novel liquefying α-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequence. Appl Environ Microbiol 64:3282–3289PubMedGoogle Scholar
  109. 109.
    Industrial enzymes (2007) In: Aehle W (ed) Enzymes in industry: production and applications, 3rd edn. Wiley-VCH, Weinheim, pp 99–262Google Scholar
  110. 110.
    Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2(3):185–190PubMedCrossRefGoogle Scholar
  111. 111.
    Ito S, Shikata S, Ozaki K, Kawai S, Okamoto KI, Takei A, Ohta Y, Satoh T (1989) Alkaline cellulase for laundry detergents: production by Bacillus sp. KSM-635 and enzymatic properties. Agric Biol Chem 53:1275–1281Google Scholar
  112. 112.
    Ito S (1997) Alkaline cellulase from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1:61–66PubMedCrossRefGoogle Scholar
  113. 113.
    Ito Y, Tomita T, Roy N, Nakano A, Sugawara-Tomita N, Watanabe S, Okai N, Abe N, Kamio Y (2003) Cloning, expression and cell surface localization of Paenibacillus sp. strain W-61 xylanase 5, a multidomain xylanase. Appl Environ Microbiol 69(12):6969–6978PubMedCrossRefGoogle Scholar
  114. 114.
    Jackett PS, Aber VR, Lowrie DB (1978) Virulence and resistance to superoxide, low pH and hydrogen peroxide among strains of Mycobacterium tuberculosis. J Gen Microbiol 104:37–45PubMedGoogle Scholar
  115. 115.
    Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annu Rev Microbiol 53:315–351PubMedCrossRefGoogle Scholar
  116. 116.
    Jagtap S, Rao M (2005) Purification and properties of a low molecular weight 1, 4-beta-D-glucan glucohydrolase having one active site for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora sp. Biochem Biophys Res Commun 329(1):111–116PubMedCrossRefGoogle Scholar
  117. 117.
    Jung SW, Kim TK, Lee KW, Lee YH (2007) Catalytic properties of β-cyclodextrin glucanotransferase from alkalophilic Bacillus sp. BL-12 and intermolecular transglycosylation of stevioside. Biotechnol Bioprocess Eng 12:207–212CrossRefGoogle Scholar
  118. 118.
    Jyonouchi H, Sun S, Gross M (1995) Effect of carotenoids on in vitro immunoglobulin production by human peripheral blood mononuclear cells: Astaxanthin, a carotenoid without vitamin A activity, enhances in vitro immunoglobulin production in response to a T-dependent stimulant and antigen. Nutr Cancer 23:171–183PubMedCrossRefGoogle Scholar
  119. 119.
    Kalantzi S, Mamma D, Christakopoulos P, Kekos D (2008) Effect of pectate lyase bioscouring on physical, chemical and low-stress mechanical properties of cotton fabrics. Bioresour Technol 99(17):8185–8192PubMedCrossRefGoogle Scholar
  120. 120.
    Kanso S, Greene AC, Patel BKC (2002) Bacillus subterraneus sp. nov., an iron and manganese reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874PubMedCrossRefGoogle Scholar
  121. 121.
    Kapoor M, Beg QK, Bhushan B, Singh K, Dadhich KS, Hoondal GS (2001) Application of an alkaline and thermostable polygalacturonase from Bacillus sp. MG-cp-2 in degumming of ramie (Boehmeria nivea) and sunn hemp (Crotalaria juncea) bast fibres. Process Biochem 36(8–9):803–807CrossRefGoogle Scholar
  122. 122.
    Karadzic I, Masui A, Zivkovic LI, Fujiwara N (2006) Purification and characterization of an alkaline lipase from Pseudomonas aeruginosa isolated from putrid mineral cutting oil as component of metalworking fluid. J Biosci Bioeng 102:82–89PubMedCrossRefGoogle Scholar
  123. 123.
    Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Application of pectinase in the commercial sector: a review. Bioresour Technol 77:215–227PubMedCrossRefGoogle Scholar
  124. 124.
    Katapodis P, Christakopoulou V, Kekos D, Christakopoulos P (2007) Optimization of xylanase production by Chaetomium thermophilium in wheat straws using response surface methodology. Biochem Eng J 35:136–141CrossRefGoogle Scholar
  125. 125.
    Kazlauskas RJ, Bornscheuer U (1998) Biotransformations with lipases. In: Rehm HJ, Reeds G (eds) Biotechnology: Biotransformations I, Wiley-VCH Verlag GmbH, Weinheim, Germany, pp 37–192. doi: 10.1002/9783527620906.ch3
  126. 126.
    Kelly CT, Fogarty WM (1978) Production and properties of polygalacturonate lyase by an alkalophilic microorganism, Bacillus sp. RK9. Can J Microbiol 24:1164–1172PubMedCrossRefGoogle Scholar
  127. 127.
    Kim CH, Choi HI, Lee DS (1993) Pullulanases of alkaline and broad pH range from a newly isolated alkalophilic Bacillus sp. S-1 and a Micrococcus sp. Y-1. J Ind Microbiol 12:48–57CrossRefGoogle Scholar
  128. 128.
    Kim CH, Choi HI, Lee DS (1993) Purification and biochemical properties of an alkaline pullulanase from alkalophilic Bacillus sp. S-1. Biosci Biotechnol Biochem 57:1632–1637PubMedCrossRefGoogle Scholar
  129. 129.
    Kim EY, Oh KH, Lee MH, Kang CH, Oh TK, Yoon JH (2009) Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Appl Environ Microbiol 75(1):257–260PubMedCrossRefGoogle Scholar
  130. 130.
    Kim KC, Seung-Soo Y, Oh Young A, Seong-Jun K (2003) Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J Microbiol Biotechnol 13:1–8Google Scholar
  131. 131.
    Kim TU, Gu BG, Jeong JY, Byun SM, Shin YC (1996) Purification and characterization of a maltotetraose-forming alkaline α-amylase from an alkalophilic Bacillus strain GM8901. Appl Environ Microbiol 61:3105–3112Google Scholar
  132. 132.
    Kimura H, Okamura A, Kawaide H (1994) Oxidation of 3-, 7-, and 12-hydroxyl groups of cholic acid by an alkalophilic Bacillus sp. Biosci Biotechnol Biochem 58:1002–1006CrossRefGoogle Scholar
  133. 133.
    Ko CH, Chen WL, Tsai CH, Jane WN, Liu CC, Tu J (2007) Paenibacillus campinasensis BL11: a wood material-utilizing bacterial strain isolated from black liquor. Bioresour Technol 98(14):2727–2733PubMedCrossRefGoogle Scholar
  134. 134.
    Ko CH, Lin ZP, Tu J, Tsai CH, Liu CC, Chen HT, Wang TP (2010) Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching. Int Biodeterioration Biodegrad 64(1):13–19CrossRefGoogle Scholar
  135. 135.
    Kobayashi T, Hatada Y, Higaki N, Lusterio DD, Ozawa T, Koike K, Kawai S, Ito S (1999) Enzymatic properties and deduced amino acid sequence of a high-alkaline pectate lyase from an alkaliphilic Bacillus isolate. Biochim Biophys Acta 2:145–154Google Scholar
  136. 136.
    Kobayashi T, Koike K, Yoshimatsu T, Higaki N, Suzumatsu A, Ozawa T, Hatada Y, Ito S (1999) Purification and properties of a low-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain of Bacillus. Biosci Biotechnol Biochem 63(1):65–72PubMedCrossRefGoogle Scholar
  137. 137.
    Kozlowski R, Batog J, Konczewicz W, Mackiewicz-Talarczyk M, Muzyczek M, Sedelnik N, Tanska B (2006) Enzymes in bast fibrous plant processing. Biotechnol Lett 28:761–765PubMedCrossRefGoogle Scholar
  138. 138.
    Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32(7):1026–1035CrossRefGoogle Scholar
  139. 139.
    Krzeslak J, Gerritse G, van Merkerk R, Cool RH, Quax WJ (2008) Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system. Appl Environ Microb 74(5):1402–1411CrossRefGoogle Scholar
  140. 140.
    Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55(11):1294–1301PubMedCrossRefGoogle Scholar
  141. 141.
    Kumar BK, Balakrishnan H, Rele MV (2004) Compatibility of alkaline xylanases from an alkaliphilic Bacillus NCL (87-6-10) with commercial detergents and proteases. J Ind Microbiol Biotechnol 31(2):83–87CrossRefGoogle Scholar
  142. 142.
    Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial viewpoint. Biotechnol Adv 17:561–594PubMedCrossRefGoogle Scholar
  143. 143.
    Kundu A, Chakraborty MR, Chatterjee NC (2008) Biocontrol of wood decay by Trichoderma spp.—retrospect and prospect. Asian J Exp Sci 22(3):373–384Google Scholar
  144. 144.
    Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747PubMedCrossRefGoogle Scholar
  145. 145.
    Lawton EM, Cotter PD, Hill C, Ross RP (2007) Identification of a novel two-peptide lantibiotic, haloduracin, produced by the alkaliphile Bacillus halodurans C-125. FEMS Microbiol Lett 267(1):64–71PubMedCrossRefGoogle Scholar
  146. 146.
    LeCleir GR, Buchan A, Maurer J, Moran MA, Hollibaugh JT (2007) Comparison of chitinolytic enzymes from an alkaline, hypersaline lake and an estuary. Environ Microbiol 9(1):197–205PubMedCrossRefGoogle Scholar
  147. 147.
    Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DWS (2006) Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10:295–300PubMedCrossRefGoogle Scholar
  148. 148.
    Lee KW, Shin HD, Lee YH (2003) Catalytic function and affinity purification of site-directed mutant β-cyclodextrin glucanotransferase from alkalophilic Bacillus firmus var. alkalophilus. J Mol Catal B: Enzymatic 26(3–6):157–165CrossRefGoogle Scholar
  149. 149.
    Lee PC, Schmidt-Dannert C (2002) Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl Microbiol Biotechnol 60:1–11PubMedCrossRefGoogle Scholar
  150. 150.
    Leveque E, Janecek S, Haye B, Belarbi A (2000) Thermophilic archaeal amylolytic enzymes: catalytic mechanism, substrate specificity and stability. Enzyme Microbiol Technol 26:3–14CrossRefGoogle Scholar
  151. 151.
    Li C, Lewis MR, Gilbert AB, Noel MD, Scoville DH, Allman GW, Savage PB (1999) Antimicrobial activities of amine- and guanidine-functionalized cholic acid derivatives. Antimicrob Agents Chemother 43(6):1347–1349PubMedGoogle Scholar
  152. 152.
    Li XT, Jiang ZQ, Li LT, Yang QS, Feng WY, Fan JY, Kusakabe I (2005) Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresour Technol 96:1370–1379PubMedCrossRefGoogle Scholar
  153. 153.
    Li Z, Bai Z, Zhang B, Xie H, Hu Q, Hao C, Xue W, Zhang H (2005) Newly isolated Bacillus gibsonii S-2 capable of using sugar beet pulp for alkaline pectinase production. World J Microbiol Biotechnol 21:1483–1486CrossRefGoogle Scholar
  154. 154.
    Lima VMG, Krieger N, Mitchell DA, Baratti JC, Filippis I, Fontana JD (2004) Evaluation of the potential for use in biocatalysis of a lipase from a wild strain of Bacillus megaterium. J Mol Catal B Enzym 31:53–61CrossRefGoogle Scholar
  155. 155.
    Lin LL, Chyau CC, Hsu WH (1996) Production and properties of a raw starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol Appl Biochem 28:61–68Google Scholar
  156. 156.
    Lin LL, Tsau MR, Chu WS (1996) Purification and properties of a 140-kDa amylopullulanase from thermophilic and alkaliphilic Bacillus sp. strain TS-23. Biotechnol Appl Biochem 24:101–107Google Scholar
  157. 157.
    Liu SL, Chen WZ, Wang Y, Liu G, Yu SW, Xing M (2008) Purification and characterization of a novel neutral β-glucanase and an alkaline β-glucanase from an alkaliphilic Bacillus isolate. World J Microbiol Biotechnol 24:149–155CrossRefGoogle Scholar
  158. 158.
    Lu Y, Lu F, Wang X, Bie X, Sun H, Wuyundalai LuZ (2009) Identification of bacteria producing a thermophilic lipase with positional non-specificity and characterization of the lipase. Ann Microbiol 59(3):565–571CrossRefGoogle Scholar
  159. 159.
    Luque-Almagro VM, Huertas MJ, Martínez-Luque M, Moreno-Vivián C, Roldán MD, García-Gil LJ, Castillo F, Blasco R (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947PubMedCrossRefGoogle Scholar
  160. 160.
    Mahat MK, Illias RM, Rahman RA, Rashid NAA, Mahmood NAN, Hassan O, Aziz SA, Kamaruddin K (2004) Production of cyclodextrin glucanotransferase (CGTase) from alkalophilic Bacillus sp. TS1–1: media optimization using experimental design. Enzyme Microb Technol 35(5):467–473CrossRefGoogle Scholar
  161. 161.
    Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5(5):500–516PubMedGoogle Scholar
  162. 162.
    Mamo G, Gessesse A (1999) Purification and characterization of two raw-starch-digesting thermostable α-amylases from a thermophilic Bacillus. Enzyme Microb Technol 25:433–438CrossRefGoogle Scholar
  163. 163.
    Martínez JL, Baquero F (2002) Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 15(4):647–679PubMedCrossRefGoogle Scholar
  164. 164.
    Martins RF, Hatti-Kaul R (2002) A new cyclodextrin glycosyltransferase from an alkaliphilic Bacillus agaradhaerens isolate: purification and characterization. Enzyme Microb Technol 30:116–124CrossRefGoogle Scholar
  165. 165.
    Matsuzawa M, Kawano M, Nakamura N, Horikoshi K (1975) An improved method for the production of Schardinger β-dextrin on an industrial scale by cyclodextrin glycosyltransferase of an alkalophilic Bacillus sp. Starch 27:410–413CrossRefGoogle Scholar
  166. 166.
    Mawadza C, Hatti-Kaul R, Zvauya R, Mattiasson B (2000) Purification and characterization of cellulases produced by two Bacillus strains. J Biotechnol 83:177–187PubMedCrossRefGoogle Scholar
  167. 167.
    Meilleur C, Hupé JF, Juteau P, Shareck F (2009) Isolation and characterization of a new alkali-thermostable lipase cloned from a metagenomic library. J Ind Microbiol Biot 36(6):853–861CrossRefGoogle Scholar
  168. 168.
    Menocci V, Goulart AJ, Adalberto PR, Tavano OL, Parreira DM, Contiero J, Monti R (2008) Cyclodextrin glycosyltransferase production by new Bacillus sp. strains isolated from Brazilian soil. Braz J Microbiol 39(4):682–688CrossRefGoogle Scholar
  169. 169.
    Merz U (2000) Business report: the global market for carotenoids. Business Communication Company, Norwalk, ConnGoogle Scholar
  170. 170.
    Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27PubMedCrossRefGoogle Scholar
  171. 171.
    Mishra M, Thakur IS (2010) Isolation and characterization of alkalotolerant bacteria and optimization of process parameters for decolorization and detoxification of pulp and paper mill effluent by Taguchi approach. Biodegradation. doi: 10.1007/s10532-010-9356-x
  172. 172.
    Mitra S, Khare SK, Singh R (2010) Alkaline lipase production from Enterobacter aerogenes by solid-state fermentation of agro-industrial wastes. Int J Environ Waste Manage 5(3–4):410–418CrossRefGoogle Scholar
  173. 173.
    Miyashita K (2009) Function of marine carotenoids. Forum Nutr 61:136–146PubMedCrossRefGoogle Scholar
  174. 174.
    Moriwaki C, Costa GL, Pazzetto R, Zanin GM, Moraes FF, Portilho M, Matioli G (2007) Production and characterization of a new cyclodextrin glycosyltransferase from Bacillus firmus isolated from Brazilian soil. Proc Biochem 42(10):1384–1390CrossRefGoogle Scholar
  175. 175.
    Moriwaki C, Ferreira LR, Rodella JRT, Matioli G (2009) A novel cyclodextrin glycosyltransferase from Bacillus sphaericus strain 41: production, characterization and catalytic properties. Biochem Eng J 48(1):124–131CrossRefGoogle Scholar
  176. 176.
    Murakami S, Nishimoto H, Toyama Y, Shimamoto E, Takenaka S, Kaulpiboon J, Prousoontorn M, Limpaseni T, Pongsawasdi P, Aoki K (2007) Purification and characterization of two alkaline, thermotolerant alpha-amylases from Bacillus halodurans 38C-2-1 and expression of the cloned gene in Escherichia coli. Biosci Biotechnol Biochem 71(10):2393–2401PubMedCrossRefGoogle Scholar
  177. 177.
    Murmanis L, Highley TL, Palmer JG (1988) The action of isolated brown rot cell free culture filtrate, H2O2-Fe3+ and the combination of both on wood. Wood Sci Technol 22:59–69CrossRefGoogle Scholar
  178. 178.
    Nagar S, Gupta VK, Kumar D, Kumar L, Kuhad RC (2010) Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J Ind Microbiol Biotechnol 37(1):71–83PubMedCrossRefGoogle Scholar
  179. 179.
    Nagayama K, Yamasaki N, Imai M (2002) Fatty acid esterification catalyzed by Candida rugosa lipase in lecithin microemulsion-based organogels. Biochem Eng J 12:231–236CrossRefGoogle Scholar
  180. 180.
    Nakamura N, Watanabe K, Horikoshi K (1975) Purification and some properties of alkaline pullulanase from a strain of Bacillus no. 202-1, an alkalophilic microorganism. Biochim Biophys Acta 397:188–193PubMedGoogle Scholar
  181. 181.
    Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K (1993) Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41 M–1. Appl Environ Microbiol 59:2311–2316PubMedGoogle Scholar
  182. 182.
    Nawani NN, Kapadnis BP (2003) Chitin degrading potential of bacteria from extreme and moderate environment. Indian J Exp Biol 41(3):248–254PubMedGoogle Scholar
  183. 183.
    Ndlovu S (2008) Biohydrometallurgy for sustainable development in the African minerals industry. Hydrometallurgy 91(1–4):20–27CrossRefGoogle Scholar
  184. 184.
    Neilands JB (1991) A brief history of iron metabolism. Biol Met 4(1):1–6PubMedCrossRefGoogle Scholar
  185. 185.
    Nicholls P, Fita I, Loewen PC (2001) Enzymology and structure of catalases. Adv Inorg Chem 51:51–106CrossRefGoogle Scholar
  186. 186.
    Ningthoujam DS, Kshetri P, Sanasam S, Nimaichand S (2009) Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermo-tolerant indigenous actinomycetes. World Appl Sci J 7(7):907–916Google Scholar
  187. 187.
    Nini L, Sarda L, Comeau LC, Boitard E, Dubès JP, Chahinian H (2001) Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study. Biochim Biophys Acta 1534:34–44PubMedGoogle Scholar
  188. 188.
    Nizamudeen S, Bajaj BK (2009) A novel thermo-alkalitolerant endoglucanase production using cost-effective agricultural residues as substrates by a newly isolated Bacillus sp. NZ. Food Technol Biotechnol 47(4):435–440Google Scholar
  189. 189.
    Nonaka T, Fujihashi M, Kita A, Hagihara H, Ozaki K, Ito S, Miki K (2003) Crystal structure of calcium-free α-Amylase from Bacillus sp. strain KSM-K38 (AmyK38) and its sodium ion binding sites. J Biol Chem 278(27):24818–24824PubMedCrossRefGoogle Scholar
  190. 190.
    Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777PubMedCrossRefGoogle Scholar
  191. 191.
    Ogawa A, Sawada K, Saito K, Hakamada Y, Sumitomo N, Hatada Y, Kobayashi T, Ito S (2000) A new high-alkaline and high-molecular weight pectate lyase from a Bacillus isolate: enzymatic properties and cloning of the gene for the enzyme. Biosci Biotechnol Biochem 64:1133–1141PubMedCrossRefGoogle Scholar
  192. 192.
    Okazaki W, Akiba T, Horikoshi K, Akahoshi R (1984) Production and properties of two types of xylanases from alkalophilic thermophilic Bacillus spp. Appl Microbiol Biotechnol 19:335–340CrossRefGoogle Scholar
  193. 193.
    Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78:39–48PubMedCrossRefGoogle Scholar
  194. 194.
    Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review part B: Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 153:315–324Google Scholar
  195. 195.
    Osanjo GO, Muthike EW, Tsuma L, Okoth MW, Bulimo WD, Lünsdorf H, Abraham WR, Dion M, Timmis KN, Golyshin PN, Mulaa FJ (2009) A salt lake extremophile, Paracoccus bogoriensis sp. nov., efficiently produces xanthophyll carotenoids. Afr J Microbiol Res 3(8):426–433Google Scholar
  196. 196.
    Paavilainen S, Helisto P, Korpela T (1994) Conversion of carbohydrates to organic acids by alkaliphilic bacilli. J Ferment Bioeng 78:217–222CrossRefGoogle Scholar
  197. 197.
    Padden AN, Dillon VM, Edmonds J, Collins MD, Alvarez N, John P (1999) An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49:1025–1031PubMedCrossRefGoogle Scholar
  198. 198.
    Palozza P, Torelli C, Boninsegna A, Simone R, Catalano A, Mele MC, Picci N (2009) Growth-inhibitory effects of the astaxanthin-rich alga Haematococcus pluvialis in human colon cancer cells. Cancer Lett 283(1):108–117PubMedCrossRefGoogle Scholar
  199. 199.
    Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152PubMedCrossRefGoogle Scholar
  200. 200.
    Paszczynski A, Crowford RL, Blanchette RA (1988) Delignification of wood chips and pulps by using natural and synthetic porphyrin: models of fungal decay. Appl Environ Microbiol 54:62–68PubMedGoogle Scholar
  201. 201.
    Pazarlioglu NK, Sariisik M, Telefoncu A (2005) Treating denim fabrics with immobilized commercial cellulases. Process Biochem 40:767–771CrossRefGoogle Scholar
  202. 202.
    Phucharoen K, Hoshino K, Takenaka Y, Shinozawa T (2002) Purification, characterization, and gene sequencing of a catalase from an alkali- and halo-tolerant bacterium, Halomonas sp. SK1. Biosci Biotechnol Biochem 66(5):955–962PubMedCrossRefGoogle Scholar
  203. 203.
    Piao J, Kobayashi T, Adachi S, Nakanishi K, Matsuno R (2003) Synthesis of mono- and dioleoyl erythritols through immobilized-lipase-catalyzed condensation of erythritol and oleic acid in acetone. Biochem Eng J 14:79–84CrossRefGoogle Scholar
  204. 204.
    Pileni MP (2006) Reverse micelles used as templates: a new understanding in nanocrystal growth. J Exp Nanosci 1(1):13–27CrossRefGoogle Scholar
  205. 205.
    Pollock J, Weber KA, Lack J, Achenbach LA, Mormile MR, Coates JD (2007) Alkaline iron(III) reduction by a novel alkaliphilic, halotolerant, Bacillus sp. isolated from salt flat sediments of Soap Lake. Appl Microbiol Biotechnol 77:927–934PubMedCrossRefGoogle Scholar
  206. 206.
    Rahman RN, Geok LP, Wong CF, Basri M, Salleh AB (2010) Molecular investigation of a gene encoding organic solvent-tolerant alkaline protease from Pseudomonas aeruginosa strain K. J Basic Microbiol 50(2):143–149PubMedGoogle Scholar
  207. 207.
    Rai SK, Roy JK, Mukherjee AK (2010) Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol 85(5):1437–1450PubMedCrossRefGoogle Scholar
  208. 208.
    Raku T, Kitagawa M, Shimakawa H, Tokiwa Y (2003) Enzymatic synthesis of trehalose esters having lipophilicity. J Biotechnol 100:203–208PubMedCrossRefGoogle Scholar
  209. 209.
    Rao CS, Sathish T, Ravichandra P, Prakasham RS (2009) Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem 44:262–268CrossRefGoogle Scholar
  210. 210.
    Rao MB, Tanksale AM, Ghatge MS, Deshpande VV (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635PubMedGoogle Scholar
  211. 211.
    Ratanakhanokchai K, Kyu KL, Tanticharoen M (1999) Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl Environ Microbiol 65:694–697PubMedGoogle Scholar
  212. 212.
    Reetz MT, Jaeger KE (1998) Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chem Phys Lipids 93:3–14PubMedCrossRefGoogle Scholar
  213. 213.
    Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone sensitive lipase family, cloned from a metagenomic library. Appl Environ Microb 71(2):817–825CrossRefGoogle Scholar
  214. 214.
    Ruther A, Misawa N, Böger P, Sandmann G (1997) Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids. Appl Microbiol Biotechnol 48(2):162–167PubMedCrossRefGoogle Scholar
  215. 215.
    Safarikova M, Atanasova N, Ivanova V, Weyda F, Tonkova A (2007) Cyclodextrin glucanotransferase synthesis by semicontinuous cultivation of magnetic biocatalysts from cells of Bacillus circulans ATCC 21783. Proc Biochem 42(10):1454–1459CrossRefGoogle Scholar
  216. 216.
    Salwan R, Gulati A, Kasana RC (2010) Phylogenetic diversity of alkaline protease-producing psychrotrophic bacteria from glacier and cold environments of Lahaul and Spiti, India. J Basic Microbiol 50(2):150–159PubMedGoogle Scholar
  217. 217.
    Sanghi A, Garg N, Gupta VK, Mittal A, Kuhad RC (2010) One-step purification and characterization of cellulase-free xylanase produced by alkalophilic Bacillus subtilis ash. Braz J Microbiol 41(2):467–476CrossRefGoogle Scholar
  218. 218.
    Sato M, Beppu T, Arima K (1980) Properties and structure of a novel peptide antibiotic no. 1970. Agric Biol Chem 44:3037–3040Google Scholar
  219. 219.
    Savergave LS, Dhule SS, Jogdand VV, Nene SN, Gadre RV (2008) Production and single step purification of cyclodextrin glycosyltransferase from alkalophilic Bacillus firmus by ion exchange chromatography. Biochem Eng J 39(3):510–515Google Scholar
  220. 220.
    Sawada K, Ogawa A, Ozawa T, Sumitomo N, Hatada Y, Kobayashi T, Ito S (2000) Nucleotide and amino-acid sequences of a new-type pectate lyase from an alkaliphilic strain of Bacillus. Eur J Biochem 267:1510–1515PubMedCrossRefGoogle Scholar
  221. 221.
    Saxena RK, Dutt K, Agarwal L, Nayyar P (2007) A highly thermostable and alkaline amylase from a Bacillus sp. PN5. Bioresour Technol 98(2):260–265PubMedCrossRefGoogle Scholar
  222. 222.
    Sayyed RZ, Chincholkar SB (2010) Growth and siderophores production in Alcaligenes faecalis is regulated by metal ions. Indian J Microbiol 50(2):179–182CrossRefGoogle Scholar
  223. 223.
    Sayyed RZ, Naphade BS, Chincholkar SB (2004) Ecologically competent rhizobacteria for plant growth promotion and disease management. In: Rai MK, Thakare PV, Chikhale NJ, Wadegaonkar PA, Ramteke AP (eds) Recent trends in biotechnology. Scientific Publishers, Jodhpur, India, pp 1–16Google Scholar
  224. 224.
    Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17PubMedCrossRefGoogle Scholar
  225. 225.
    Schmid G (1989) Cyclodextrin glucanotransferse production: yield enhancement by overexpression of cloned genes. Trends Biotechnol 7:244–248CrossRefGoogle Scholar
  226. 226.
    Schmidt MG (1995) Bleach cleanup with catalase. In: International conference and exhibition of the AATCC, Philadelphia, pp 248–255Google Scholar
  227. 227.
    Seifzadeh S, Sajedi RH, Sariri R (2008) Isolation and characterization of thermophilic alkaline proteases resistant to sodium dodecyl sulfate and ethylene diamine tetraacetic acid from Bacillus sp. GUS1. Iranian J Biotechnol 6(4):214–221Google Scholar
  228. 228.
    Shanmughapriya S, Kiran GS, Selvin J, Gandhimathi R, Baskar TB, Manilal A, Sujith S (2009) Optimization, production, and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnol Bioprocess Eng 14:67–75CrossRefGoogle Scholar
  229. 229.
    Shih JCH, Wang JJ (2006) Keratinase technology: from feather degradation and feed additive, to prion destruction. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 1(42):1–6Google Scholar
  230. 230.
    Shikata S, Saeki K, Okoshi H, Yoshimatsu T, Ozaki K, Kawai S, Ito S (1990) Alkaline cellulase for laundry detergents: production by alkalophilic strains of Bacillus and some properties of the crude enzymes. Agric Biol Chem 54:91–96Google Scholar
  231. 231.
    Shintre MS, Ghadge RS, Sawant SB (2002) Kinetics of esterification of lauric acid with fatty alcohols by lipase: effect of fatty alcohol. J Chem Technol Biotechnol 77:1114–1121CrossRefGoogle Scholar
  232. 232.
    Simate GS, Ndlovu S (2008) Bacterial leaching of nickel laterites using chemolithotrophic microorganisms: identifying influential factors using statistical design of experiments. Int J Miner Process 88:31–36CrossRefGoogle Scholar
  233. 233.
    Simoes M (2005) Use of biocides and surfactants to control Pseudomonas fluorescens biofilms. PhD Thesis, University of Minho, Braga, PortugalGoogle Scholar
  234. 234.
    Singh LS, Mazumder S, Bora TC (2009) Optimisation of process parameters for growth and bioactive metabolite produced by a salt-tolerant and alkaliphilic actinomycete, Streptomyces tanashiensis strain A2D. J Mycol Med 19(4):225–233Google Scholar
  235. 235.
    Sivaramakrishnan S, Gangadharan D, Nampoothiri KM, Soccol CR, Pandey A (2006) α-amylases from microbial sources—an overview on recent developments. Food Technol Biotechnol 44:173–184Google Scholar
  236. 236.
    Sivasankar B (2005) Food processing and preservation. Prentice-Hall of India Pvt. Ltd., New Delhi, IndiaGoogle Scholar
  237. 237.
    Sorokin DY, Lysenko AM, Mityushina LL, Tourova TP, Jones BE, Rainey FA, Robertson LA, Kuenen JG (2001) Thialkalimicrobium aerophilum gen. nov., sp. nov. and Thialkalimicrobium sibericum sp. nov., and Thialkalivibrio versutus gen. nov., sp. nov., Thialkalivibrio nitratis sp. nov., novel and Thialkalivibrio denitrificans sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580PubMedGoogle Scholar
  238. 238.
    Sorokin DY, Tourova TP, Kolganova TV, Sjollema KA, Kuenen JG (2002) Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182PubMedCrossRefGoogle Scholar
  239. 239.
    Sorokin DY, Tourova TP, Lysenko AM, Kuenen JG (2001) Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67:528–538PubMedCrossRefGoogle Scholar
  240. 240.
    Sorokin DY, Turova TP, Kuznetsov BB, Briantseva IA, Gorlenko VM (2000) Roseinatronobacter thiooxidans gen. nov., sp. nov., a new alkaliphilic aerobic bacteriochlorophyll a—containing bacterium isolated from a soda lake. Mikrobiologiia 69(1):89–97PubMedGoogle Scholar
  241. 241.
    Sorokin DY, van Pelt S, Tourova TP, Takaichi S, Muyzer G (2007) Acetonitrile degradation under haloalkaline conditions by Natronocella acetinitrilica gen. nov., sp. nov. Microbiology 153:1157–1164PubMedCrossRefGoogle Scholar
  242. 242.
    Stella VJ, Rajewski RA (1997) Cyclodextrins: their future in drug formulation and delivery. Pharm Res 14:556–567PubMedCrossRefGoogle Scholar
  243. 243.
    Sumitomo N, Ozaki K, Kawai S, Ito S (1992) Nucleotide sequence of the gene for an alkaline endoglucanase from an alkalophilic Bacillus and its expression in Escherichia coli and Bacillus subtilis. Biosci Biotechnol Biochem 6:872–877CrossRefGoogle Scholar
  244. 244.
    Takahara Y, Tanabe O (1960) Studies on the reduction of indigo in industrial fermentation vat (VII). J Ferment Technol 38:329–331Google Scholar
  245. 245.
    Takaichi S, Oh-Oka H, Maoka T, Jung DO, Madigan MT (2003) Novel carotenoid glucoside esters from alkaliphilic heliobacteria. Arch Microbiol 179(2):95–100PubMedGoogle Scholar
  246. 246.
    Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89(1):47–57Google Scholar
  247. 247.
    Thiemann V, Donges C, Prowe SG, Sterner R, Antranikian G (2004) Characterisation of a thermoalkali-stable cyclodextrin glycosyltransferase from the anaerobic thermoalkaliphilic bacterium Anaerobranca gottschalkii. Arch Microbiol 182:226–235PubMedCrossRefGoogle Scholar
  248. 248.
    Thumar JT, Dhulia K, Singh SP (2010) Isolation and partial purification of an antimicrobial agent from halotolerant alkaliphilic Streptomyces aburaviensis strain Kut-8. World J Microbiol Biotechnol 26:2081–2087. doi: 10.1007/s11274-010-0394-7
  249. 249.
    Thumar JT, Singh SP (2009) Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Ind Microbiol Biotechnol 36(2):211–218PubMedCrossRefGoogle Scholar
  250. 250.
    le Thuy HA, Phucharoen K, Ideno A, Maruyama T, Shinozawa T (2004) Alkali- and halo-tolerant catalase from Halomonas sp. SK1: overexpression in Escherichia coli, purification, characterization, and genetic modification. Biosci Biotechnol Biochem 68(4):814–819CrossRefGoogle Scholar
  251. 251.
    Trotman ER (1984) Dyeing and chemical technology of textile fibres, vol 285, 6th edn. Charles Griffin and Company Ltd., England, pp 223–230Google Scholar
  252. 252.
    Tsujibo H, Sato T, Inui M, Yamamoto H, Inamori Y (1988) Intracellular accumulation of phenazine antibiotics production by an alkalophilic actinomycete. Agric Biol Chem 52:301–306Google Scholar
  253. 253.
    Tsujibo H, Yoshida Y, Miyamoto K, Hasegawa T, Inamori Y (1992) Purification and properties of two types of chitinases produced by an alkalophilic actinomycete. Biosci Biotechnol Biochem 56:1304–1305CrossRefGoogle Scholar
  254. 254.
    Turrensa JF (2010) Superoxide dismutase and catalase. Compr Toxicol 4:219–227. doi: 10.1016/B978-0-08-046884-6.00412-7 CrossRefGoogle Scholar
  255. 255.
    Tzanov T, Costa S, Guebitz GM, Cavaco-Paulo A (2001) Dyeing in catalase-treated bleaching baths. Color Technol 117:1–5CrossRefGoogle Scholar
  256. 256.
    Uttatree S, Winayanuwattikun P, Charoenpanich J (2010) Isolation and characterization of a novel thermophilic-organic solvent stable lipase from Acinetobacter baylyi. Appl Biochem Biotechnol. doi: 10.1007/s12010-010-8928-x
  257. 257.
    Uygur A (2001) Reuse of decolorized wastewater of azo dyes containing dichlorotriazinyl reactive groups using an advanced oxidation method. Color Technol 117:111–113CrossRefGoogle Scholar
  258. 258.
    van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155PubMedCrossRefGoogle Scholar
  259. 259.
    Vasavada SH, Thumar JT, Singh SP (2006) Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomycete Streptomyces sannanensis strain RJT-1. Curr Sci 91(10):1393–1397Google Scholar
  260. 260.
    Vassileva A, Atanasova N, Ivanova V, Dhulster P, Tonkova A (2007) Characterisation of cyclodextrin glucanotransferase from Bacillus circulans ATCC 21783 in terms of cyclodextrin production. Ann Microbiol 57:609–615CrossRefGoogle Scholar
  261. 261.
    Vassileva A, Beschkov V, Ivanova V, Tonkova A (2005) Continuous cyclodextrin glucanotransferase production by free and immobilized cells of Bacillus circulans ATCC 21783 in bioreactors. Proc Biochem 40(10):3290–3295CrossRefGoogle Scholar
  262. 262.
    Vigo TL (1994) Textile processing and properties: preparation, dyeing, finishing, and performance. Elsevier, Amsterdam, 11:112–192Google Scholar
  263. 263.
    Viikari L (1994) Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13:335–350CrossRefGoogle Scholar
  264. 264.
    Wang HK, Liu RJ, Lu FP, Qi W, Shao J, Ma HJ (2009) A novel alkaline and low-temperature lipase of Burkholderia cepacia isolated from Bohai in China for detergent formulation. Ann Microbiol 59(1):105–110CrossRefGoogle Scholar
  265. 265.
    Wang SL, Lin YT, Liang TW, Chio SH, Ming LJ, Wu PC (2009) Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate. J Ind Microbiol Biot 36(1):65–73CrossRefGoogle Scholar
  266. 266.
    Wang W, Sun M, Liu W, Zhang B (2008) Purification and characterization of a psychrophilic catalase from Antarctic Bacillus. Can J Microbiol 54(10):823–828PubMedCrossRefGoogle Scholar
  267. 267.
    Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764PubMedCrossRefGoogle Scholar
  268. 268.
    Wilson DB, Irwin DC (1999) Genetics and properties of cellulases. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol 65. Springer, Berlin Heidelberg New York, pp 1–21Google Scholar
  269. 269.
    World Enzymes to 2013—Demand and Sales Forecasts, Market Share, Market Size, Market Leaders (2009) http://www.freedoniagroup.com/World-Enzymes.html
  270. 270.
    Yang C, Wang F, Hao J, Zhang K, Yuan N, Sun M (2010) Identification of a proteolytic bacterium, HW08, and characterization of its extracellular cold-active alkaline metalloprotease Ps5. Biosci Biotechnol Biochem 74(6):1220–1225PubMedCrossRefGoogle Scholar
  271. 271.
    Yang C, Wang Z, Li Y, Niu Y, Du M, He X, Ma C, Tang H, Xu P (2010) Metabolic versatility of halotolerant and alkaliphilic strains of Halomonas isolated from alkaline black liquor. Bioresour Technol 101(17):6778–6784PubMedCrossRefGoogle Scholar
  272. 272.
    Yang CC, Leong J (1982) Production of deferriferrioxamines B and E from a ferroverdin-producing Streptomyces species. J Bacteriol 149(1):381–383PubMedGoogle Scholar
  273. 273.
    Yang VW, Zhuang Z, Elegir G, Jeffries TW (1995) Alkaline-active xylanase produced by an alkaliphilic Bacillus sp. isolated from kraft pulp. J Indust Microbiol 15:434–441CrossRefGoogle Scholar
  274. 274.
    Ye Q, Roh Y, Carroll SL, Blair B, Zhou JZ, Zhang CL, Fields M (2004) Alkaline anaerobic respiration: isolation and characterization of a novel alkaliphilic and metal-reducing bacterium. Appl Environ Microbiol 70:5595–5602PubMedCrossRefGoogle Scholar
  275. 275.
    Yim DE, Sato HH, Park YH, Park YK (1997) Production of cyclodextrin from starch by cyclodextrin glycosyltransferase from Bacillus firmus and characterization of purified enzyme. J Ind Microbiol Biotechnol 18:402–405CrossRefGoogle Scholar
  276. 276.
    Yoshihara K, Kobayashi Y (1982) Retting of Mitsumata bast by alkalophilic Bacillus in paper making. Agric Biol Chem 46:109–117Google Scholar
  277. 277.
    Yoshimatsu T, Ozaki K, Shikata S, Ohta Y, Koike K, Kawai S, Ito S (1990) Purification and characterization of alkaline endo-1, 4-β-glucanases from alkalophilic Bacillus sp. KSM-635. J Gen Microbiol 136:1973–1979Google Scholar
  278. 278.
    Yumoto I, Fukumori Y, Yamanaka T (1990) Purification and characterization of catalase from a facultative alkalophilic Bacillus. J Biochem 108(4):583–587PubMedGoogle Scholar
  279. 279.
    Yumoto I, Hirota K, Nodasaka Y, Yokota Y, Hoshino T, Nakajima K (2004) Alkalibacterium psychrotolerans sp. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 54:2379–2383PubMedCrossRefGoogle Scholar
  280. 280.
    Yumoto I, Hishinuma-Narisawa M, Hirota K, Shingyo T, Takebe F, Nodasaka Y, Matsuyama H, Hara I (2004) Exiguobacterium oxidotolerans sp. nov., a novel alkaliphile exhibiting high catalase activity. Int J Syst Evol Microbiol 54:2013–2017PubMedCrossRefGoogle Scholar
  281. 281.
    Yumoto I, Ichihashi D, Iwata H, Istokovics A, Ichise N, Matsuyama H, Okuyama H, Kawasaki K (2000) Purification and characterization of a catalase from the facultatively psychrophilic bacterium Vibrio rumoiensis S-1(T) exhibiting high catalase activity. J Bacteriol 182(7):1903–1909PubMedCrossRefGoogle Scholar
  282. 282.
    Zain WSWM, Illias RM, Salleh MM, Hassan O, Rahman RA, Hamid AA (2007) Production of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. TS1-1: optimization of carbon and nitrogen concentration in the feed medium using central composite design. Biochem Eng J 33(1):26–33CrossRefGoogle Scholar
  283. 283.
    Zhao J, Lan X, Su J, Sun L, Rahman E (2008) Isolation and identification of an alkaliphilic Bacillus flexus XJU-3 and analysis of its alkaline amylase. Wei Sheng Wu Xue Bao 48(6):750–756PubMedGoogle Scholar
  284. 284.
    Zheng L, Du Y, Zhang J (2001) Degumming of ramie fibres by alkalophilic bacteria and their polysaccharide-degrading enzymes. Biores Technol 78(1):89–94CrossRefGoogle Scholar
  285. 285.
    Zheng RC, Zheng YG, Shen YC (2010) Acrylamide, microbial production by nitrile hydratase. Encycl Ind Biotechnol Bioprocess Bioseparation Cell Technol 1–39. doi: 10.1002/9780470054581.eib004

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Indira P. Sarethy
    • 1
    Email author
  • Yashi Saxena
    • 1
  • Aditi Kapoor
    • 1
  • Manisha Sharma
    • 1
  • Sanjeev K. Sharma
    • 1
  • Vandana Gupta
    • 2
  • Sanjay Gupta
    • 1
  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Ram Lal Anand CollegeDelhi UniversityNew DelhiIndia

Personalised recommendations