Journal of Industrial Microbiology & Biotechnology

, Volume 38, Issue 10, pp 1657–1665 | Cite as

Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli

  • Oksik Choi
  • Cheng-Zhu Wu
  • Sun Young Kang
  • Jong Seog Ahn
  • Tai-Boong Uhm
  • Young-Soo HongEmail author
Original Paper


Biological synthesis of plant secondary metabolites has attracted increasing attention due to their proven or assumed beneficial properties and health-promoting effects. Phenylpropanoids are the precursors to a range of important plant metabolites such as the secondary metabolites belonging to the flavonoid/stilbenoid class of compounds. In this study, engineered Escherichia coli containing artificial phenylpropanoid biosynthetic pathways utilizing tyrosine as the initial precursor were established for production of plant-specific metabolites such as ferulic acid, naringenin, and resveratrol. The construction of the artificial pathway utilized tyrosine ammonia lyase and 4-coumarate 3-hydroxylase from Saccharothrix espanaensis, cinnamate/4-coumarate:coenzyme A ligase from Streptomyces coelicolor, caffeic acid O-methyltransferase and chalcone synthase from Arabidopsis thaliana, and stilbene synthase from Arachis hypogaea.


Biosynthesis Phenylpropanoid Heterologous expression Artificial pathway 



This work was supported in part by the 21C Frontier Microbial Genomics and Application Center, Basic Science Research Program, and Global R&D Center program, the Ministry of Science and Technology, Republic of Korea, and by a grant from KRIBB Research Initiative Program. The authors would also like to thank Joon-Tae Park for assistance in the LC–MS experiment.

Supplementary material

10295_2011_954_MOESM1_ESM.doc (27 kb)
Supplementary material 1 (doc 27 kb)
10295_2011_954_MOESM2_ESM.pptx (604 kb)
Supplementary material 2 (pptx 603 kb)


  1. 1.
    Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110PubMedCrossRefGoogle Scholar
  2. 2.
    Beekwilder J, Wolswinkel R, Jonker H, Hall R, de Vos CH, Bovy A (2006) Production of resveratrol in recombinant microorganisms. Appl Environ Microbiol 72:5670–5672PubMedCrossRefGoogle Scholar
  3. 3.
    Berner M, Krug D, Bihlmaier C, Vente A, Muller R, Bechthold A (2006) Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J Bacteriol 188:2666–2673PubMedCrossRefGoogle Scholar
  4. 4.
    Davis MS, Solbiati J, Cronan JE Jr (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem 275:28593–28598PubMedCrossRefGoogle Scholar
  5. 5.
    Do CT, Pollet B, Thevenin J, Sibout R, Denoue D, Barriere Y, Lapierre C, Jouanin L (2007) Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129PubMedCrossRefGoogle Scholar
  6. 6.
    Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KL, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27:753–759PubMedCrossRefGoogle Scholar
  7. 7.
    Fowler ZL, Koffas MA (2009) Biosynthesis and biotechnological production of flavanones: current state and perspectives. Appl Microbiol Biotechnol 83:799–808PubMedCrossRefGoogle Scholar
  8. 8.
    Gao X, Wang P, Tang Y (2010) Engineered polyketide biosynthesis and biocatalysis in Escherichia coli. Appl Microbiol Biotechnol 88(6):1233–1242PubMedCrossRefGoogle Scholar
  9. 9.
    Grotewold E (2007) The Science of Flavonoids. Springer, New YorkGoogle Scholar
  10. 10.
    Horinouchi S (2009) Combinatorial biosynthesis of plant medicinal polyketides by microorganisms. Curr Opin Chem Biol 13:197–204PubMedCrossRefGoogle Scholar
  11. 11.
    Hwang EI, Kaneko M, Ohnishi Y, Horinouchi S (2003) Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster. Appl Environ Microbiol 69:2699–2706PubMedCrossRefGoogle Scholar
  12. 12.
    Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220PubMedCrossRefGoogle Scholar
  13. 13.
    Kaneko M, Hwang EI, Ohnishi Y, Horinouchi S (2003) Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria. J Ind Microbiol Biotechnol 30:456–461PubMedCrossRefGoogle Scholar
  14. 14.
    Kaneko M, Ohnishi Y, Horinouchi S (2003) Cinnamate:coenzyme A ligase from the filamentous bacterium Streptomyces coelicolor A3(2). J Bacteriol 185:20–27PubMedCrossRefGoogle Scholar
  15. 15.
    Katsuyama Y, Miyahisa I, Funa N, Horinouchi S (2007) One-pot synthesis of genistein from tyrosine by coincubation of genetically engineered Escherichia coli and Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 73:1143–1149PubMedCrossRefGoogle Scholar
  16. 16.
    Lee JS, Kim DH, Liu KH, Oh TK, Lee CH (2005) Identification of flavonoids using liquid chromatography with electrospray ionization and ion trap tandem mass spectrometry with an MS/MS library. Rapid Commun Mass Spectrom 19:3539–3548PubMedCrossRefGoogle Scholar
  17. 17.
    Leonard E, Lim KH, Saw PN, Koffas MA (2007) Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol 73:3877–3886PubMedCrossRefGoogle Scholar
  18. 18.
    Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MA (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265PubMedCrossRefGoogle Scholar
  19. 19.
    Miroux B, Walker JE (1996) Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298PubMedCrossRefGoogle Scholar
  20. 20.
    Miyahisa I, Funa N, Ohnishi Y, Martens S, Moriguchi T, Horinouchi S (2006) Combinatorial biosynthesis of flavones and flavonols in Escherichia coli. Appl Microbiol Biotechnol 71:53–58PubMedCrossRefGoogle Scholar
  21. 21.
    Miyahisa I, Kaneko M, Funa N, Kawasaki H, Kojima H, Ohnishi Y, Horinouchi S (2005) Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl Microbiol Biotechnol 68:498–504PubMedCrossRefGoogle Scholar
  22. 22.
    Signorelli P, Ghidoni R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16:449–466PubMedCrossRefGoogle Scholar
  23. 23.
    Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366PubMedCrossRefGoogle Scholar
  24. 24.
    Watts KT, Lee PC, Schmidt-Dannert C (2004) Exploring recombinant flavonoid biosynthesis in metabolically engineered Escherichia coli. ChemBioChem 5:500–507PubMedCrossRefGoogle Scholar
  25. 25.
    Watts KT, Lee PC, Schmidt-Dannert C (2006) Biosynthesis of plant-specific stilbene polyketides in metabolically engineered Escherichia coli. BMC Biotechnol 6:22PubMedCrossRefGoogle Scholar
  26. 26.
    Weisshaar B, Jenkins GI (1998) Phenylpropanoid biosynthesis and its regulation. Curr Opin Plant Biol 1:251–257PubMedCrossRefGoogle Scholar
  27. 27.
    Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Oksik Choi
    • 1
    • 2
  • Cheng-Zhu Wu
    • 1
  • Sun Young Kang
    • 1
  • Jong Seog Ahn
    • 1
  • Tai-Boong Uhm
    • 2
  • Young-Soo Hong
    • 1
    Email author
  1. 1.Korea Research Institute of Bioscience and BiotechnologyChungbukRepublic of Korea
  2. 2.Biological SciencesChunbuk National UniversityJeollabuk-doRepublic of Korea

Personalised recommendations