Journal of Industrial Microbiology & Biotechnology

, Volume 38, Issue 9, pp 1477–1484 | Cite as

Microbial removal of acetate selectively from sugar mixtures

  • Arun Lakshmanaswamy
  • Eashwar Rajaraman
  • Mark A. Eiteman
  • Elliot Altman
Original Paper


Acetic acid is an unavoidable constituent of the biomass hydrolysates generated from acetylated hemicellulose and lignin, and acetate affects the performance of microbes used to convert these hydrolysates into biofuels or other biochemicals. In this study, acetate was selectively removed from synthetic mixtures of glucose and xylose using metabolically engineered Escherichia coli strains having mutations in the glucose phosphotransferase system (PTS) genes (ptsG, manZ, crr), glucokinase (glk), and xylose (xylA). In batch culture, ALS1060 (ptsG manZ glk xylA) consumed exclusively acetate to depletion, and then consumed the two sugars only at a very slow rate (a growth rate of about 0.01 h−1). We also examined the effects of an additional knockout of either malX, fruA, fruB, bglF, or crr, genes that are involved in other PTSs, and a batch process using KD840 (ptsG manZ glk crr xylA) demonstrated a further reduction in glucose or xylose consumption by E. coli. These results demonstrate the feasibility of using a substrate-selective approach for the pre-treatment of biomass hydrolysate for microbial processes.


Biomass hydrolysate Xylose Glucose Ethanol Acetate 



This project was supported by the Consortium for Plant Biotechnology Research (CPBR), the National Science Foundation (CBET-0929893), and the Georgia Experiment Station. We also acknowledge S. A. Lee and R. Altman for technical assistance.


  1. 1.
    Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:1–11CrossRefGoogle Scholar
  2. 2.
    Benson RE, Young JS, Kamer SN, Hanley TR (2005) Detoxification of actual pretreated corn stover hydrolysate using activated carbon powder. Appl Biochem Biotechnol 124:923–934CrossRefGoogle Scholar
  3. 3.
    Berg P (1956) Acyl adenylates: an enzymatic mechanism of acetate activation. J Biol Chem 222:991–1013PubMedGoogle Scholar
  4. 4.
    Casal M, Cardoso H, Leão C (1998) Effects of ethanol and other alkanols on transport of acetic acid in Saccharomyces cerevisiae. Appl Environ Microbiol 64(2):665–668PubMedGoogle Scholar
  5. 5.
    Chandel AK, Kapoor RK, Singh A, Kuhad RC (2007) Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Biores Technol 98:1947–1950CrossRefGoogle Scholar
  6. 6.
    Chesson A, Gordon AJ, Lomax JA (1993) Substituent groups linked by alkali labile bonds to arabinose and xylose residues of legume grass and cereal straw walls and their fate during digestion by rumen microorganisms. J Sci Food Agric 34(12):1330–1340CrossRefGoogle Scholar
  7. 7.
    Chou TC, Lipmann F (1952) Separation of acetyl transfer enzymes in pigeon liver extract. J Biol Chem 196:89–103PubMedGoogle Scholar
  8. 8.
    Curtis SJ, Epstein W (1975) Phosphorylation of D-glucose in Escherichia coli mutants defective in glucosephosphotransferase, mannosephosphotransferase, and glucokinase. J Bacteriol 122(3):1189–1199PubMedGoogle Scholar
  9. 9.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645PubMedCrossRefGoogle Scholar
  10. 10.
    Eiteman MA, Lee SA, Altman E (2008) A co-fermentation strategy to consume sugar mixtures effectively. J Biol Eng 2:3PubMedCrossRefGoogle Scholar
  11. 11.
    Eiteman MA, Chastain MJ (1997) Optimization of the ion-exchange analysis of organic acids from fermentation. Anal Chim Acta 338:69–75CrossRefGoogle Scholar
  12. 12.
    Fonseca BR, Moutta RO, Ferraz FO, Vieira ER, Nogueira AS, Baratella BF, Rodrigues LC, Hou-Rui Z, Silva SS (2011) Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. J Ind Microbiol Biotechnol 38:199–207Google Scholar
  13. 13.
    Gimenez R, Nuñez MF, Badia J, Aguilar J, Baldoma L (2003) The gene yjcG cotranscribed with the gene acs, encodes an acetate permease in Escherichia coli. J Bacteriol 185(21):6448–6455PubMedCrossRefGoogle Scholar
  14. 14.
    Helle S, Cameron D, Lam J, White B, Duff S (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzyme Microb Technol 33(6):786–792CrossRefGoogle Scholar
  15. 15.
    Holms WH (1986) The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Regul 28:69–105PubMedGoogle Scholar
  16. 16.
    Horváth IS, Sjöde A, Nilvebrant NO, Zagorodni A, Jönsson LJ (2004) Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce. Appl Biochem Biotechnol 114:525–538CrossRefGoogle Scholar
  17. 17.
    Huber F, Erni B (1996) Membrane topology of the mannose transporter of Escherichia coli K12. Eur J Biochem 239(3):810–817PubMedCrossRefGoogle Scholar
  18. 18.
    Jensen KF (1993) The Escherichia coli K-12 “wild-types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J Bacteriol 175:3401–3407PubMedGoogle Scholar
  19. 19.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26PubMedCrossRefGoogle Scholar
  20. 20.
    Lasko DR, Zamboni N, Sauer U (2000) Bacterial response to acetate challenge: a comparison of tolerance among species. Appl Microbiol Biotechnol 54(2):243–247PubMedCrossRefGoogle Scholar
  21. 21.
    Lengeler JW, Mayer RJ, Schmid K (1982) Phosphoenolpyruvate-dependent phosphotransferase system enzyme III and plasmid-encoded sucrose transport in Escherichia coli K-12. J Bacteriol 151:468–471PubMedGoogle Scholar
  22. 22.
    Lux R, Jahreis K, Bettenbrock K, Parkinson JS, Lengeler JW (1995) Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci USA 92:11583–11587PubMedCrossRefGoogle Scholar
  23. 23.
    Novotny MJ, Frederickson WL, Waygood EB, Saier MH Jr (1985) Allosteric regulation of glycerol kinase by enzyme IIIglc of the phosphotransferase system in Escherichia coli and Salmonella typhimurium. J Bacteriol 162:810–816PubMedGoogle Scholar
  24. 24.
    Plumbridge J (2002) Regulation of gene expression in the PTS in Escherichia coli: the role and interactions of Mlc. Curr Opin Microbiol 5:187–193PubMedCrossRefGoogle Scholar
  25. 25.
    Postma PW, Lengeler JW, Jacobson GR (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57(3):543–594PubMedGoogle Scholar
  26. 26.
    Rose IA, Grunsberg-Manago M, Korey SR, Ochoa S (1954) Enzymatic phosphorylation of acetate. J Biol Chem 211:737–756PubMedGoogle Scholar
  27. 27.
    Sarkanen KV, Ludwig CH (1971) Lignins: occurrence, formation, structure and reactions. Wiley-Interscience, New York, pp 345–372Google Scholar
  28. 28.
    Schneider H (1996) Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast. Enzyme Microb Technol 19:94–98CrossRefGoogle Scholar
  29. 29.
    Timell TE (1967) Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1(1):45–70CrossRefGoogle Scholar
  30. 30.
    Von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560CrossRefGoogle Scholar
  31. 31.
    Wilson JJ, Deschatelets L, Nishikawa NK (1989) Comparative fermentability of enzymatic and acid hydrolysates of steam pretreated aspenwood hemicellulose by Pichia stipitis CBS 5776. Appl Microbiol Biotechnol 31:592–596CrossRefGoogle Scholar
  32. 32.
    Zaldivar J, Ingram LO (1999) Effect of organic acids on the growth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol Bioeng 66:203–210PubMedCrossRefGoogle Scholar
  33. 33.
    Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33PubMedCrossRefGoogle Scholar
  34. 34.
    Zaldivar J, Martinez A, Ingram LO (2000) Effect of alcohol compounds found in hemicelllulose hydrolysate on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 68:524–530PubMedCrossRefGoogle Scholar
  35. 35.
    Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34PubMedCrossRefGoogle Scholar
  36. 36.
    Zhu Y, Eiteman MA, DeWitt K, Altman E (2007) Homolactate fermentation by metabolically engineered Escherichia coli strains. Appl Environ Microbiol 73(2):456–464PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2011

Authors and Affiliations

  • Arun Lakshmanaswamy
    • 1
  • Eashwar Rajaraman
    • 1
  • Mark A. Eiteman
    • 1
  • Elliot Altman
    • 1
    • 2
  1. 1.Center for Molecular BioEngineering, Department of Biological and Agricultural EngineeringUniversity of GeorgiaAthensUSA
  2. 2.Department of BiologyMiddle Tennessee State UniversityMurfreesboroUSA

Personalised recommendations