Enzyme catalysis with small ionic liquid quantities

  • Fabian Fischer
  • Julien Mutschler
  • Daniel Zufferey
Review

Abstract

Enzyme catalysis with minimal ionic liquid quantities improves reaction rates, stereoselectivity and enables solvent-free processing. In particular the widely used lipases combine well with many ionic liquids. Demonstrated applications are racemate separation, esterification and glycerolysis. Minimal solvent processing is also an alternative to sluggish solvent-free catalysis. The method allows simplified down-stream processing, as only traces of ionic liquids have to be removed.

Keywords

Enzyme catalysis Solvent free Ionic liquid Multiphase Coating 

References

  1. 1.
    Buncel E, Rajagopal S (1990) Sovatochronism and solvent polarity scales. Acc Chem Res 23:226–231CrossRefGoogle Scholar
  2. 2.
    Dominguez de Maria P (2008) “Nonsolvent” applications of ionic liquids in biotransformations and organocatalysis. Angew Chem Int Ed 47:2–10CrossRefGoogle Scholar
  3. 3.
    Ferrer B, Garcia H, Schultz KP, Nelsen SF (2007) Mixed valence compounds as probes to determine the polarity of 1-butyl-3-methylimidazolium ionic liquids. J Phys Chem B 111:13967–13970PubMedCrossRefGoogle Scholar
  4. 4.
    Gathergood N, Garcia MT, Scammells PJ (2004) Biodegradable ionic liquids: part I. Concept, preliminary targets and evaluation. Green Chem 6:166–175CrossRefGoogle Scholar
  5. 5.
    Guo Z, Xu X (2005) New opportunity for enzymatic modification of fats and oils with industrial potentials. Org Biomol Chem 3:2615–2619PubMedCrossRefGoogle Scholar
  6. 6.
    Habulin M, Sabeder S, Paljevac M, Knez Z (2007) Lipase-catalyzed esterification of citronellol with lauric acid in supercritical carbon dioxide/co-solvent media. J Supercrit Fluids 43:199–203CrossRefGoogle Scholar
  7. 7.
    Han X, Armstrong DW (2007) Ionic liquids in separations. Acc Chem Res 40:1079–1086PubMedCrossRefGoogle Scholar
  8. 8.
    Heinsman NWJT, Schroën CGPH, Van Der Padt A, Franssen MCR, Boom FM, van’t Riet K (2003) Substrate sorption into the polymer matrix of Novozyme 435 and its effect on the enantiomeric ratio determination. Tetrahedron Asymmetry 14:2699–2704CrossRefGoogle Scholar
  9. 9.
    Itoh T, Han S, Matsushita Y, Hayase S (2004) Enhanced enantioselectivity and remarkable acceleration on the lipase-catalyzed transesterification using novel ionic liquids. Green Chem 6:437–439CrossRefGoogle Scholar
  10. 10.
    Itoh T, Matsushita Y, Abe Y, Han S, Wada S, Hayase S, Kawatsura M, Takai S, Morimoto M, Hirose Y (2006) Increased enantioselectivity and remarkable acceleration of lipase-catalyzed transesterification by using an imidazolium PEG-alkyl sulfate ionic liquid. Chem Eur J 12:9228–9237CrossRefGoogle Scholar
  11. 11.
    Kim M-J, Lee JK (2004) Enzymes coated with ionic liquids. US 2004/0087462 A1Google Scholar
  12. 12.
    Kragl U, Eckstein M, Kaftzik N (2002) Enzyme catalysis in ionic liquids. Curr Opin Biotechnol 13:565–571PubMedCrossRefGoogle Scholar
  13. 13.
    Lau RM, Sorgdrager MJ, Carrea G, van Rantwijk F, Secundo F, Sheldon RA (2004) Dissolution of Candida antarctica lipase B in ionic liquids: effects on structure and activity. Green Chem 6:483–487CrossRefGoogle Scholar
  14. 14.
    Lee JK, Kim M-J (2002) Ionic liquid-coated enzyme for biocatalysis in organic solvent. J Org Chem 67:6845–6847PubMedCrossRefGoogle Scholar
  15. 15.
    Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  16. 16.
    López-Martin I, Burello E, Davey PN, Seddon KR, Rothenberg G (2007) Anion and cation effects on imidazolium salt melting points: a descriptor modelling study. Chem Phys Chem 8:690–695PubMedGoogle Scholar
  17. 17.
    Lozano P, de Diego T, Iborra JL (2006) Immobilization of enzymes for use in ionic liquids. In: Guisan JM (ed) Immobilisation of enzymes and cells, 2nd edn. Methods in biotechnology, vol 22. Humana, Totowa, pp 257–268CrossRefGoogle Scholar
  18. 18.
    Lozano P, De Diego T, Carrié D, Vaultier M, Iborra JL (2001) Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol Lett 23:1529–1533CrossRefGoogle Scholar
  19. 19.
    Lozano P, Piamtongkam R, Kohns K, De Diego T, Vaultier M, Iborra JL (2007) Ionic liquids improve citronellol ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media. Green Chem 9:780–784CrossRefGoogle Scholar
  20. 20.
    Lozano P (2010) Enzymes in neoteric solvents: from one-phase to multiphase systems. Green Chem 12:555–569CrossRefGoogle Scholar
  21. 21.
    Moniruzzaman M, Kamiya N, Goto M (2010) Activation and stabilization of enzymes in ionic liquids. Org Biomol Chem 8:2887–2899PubMedCrossRefGoogle Scholar
  22. 22.
    Mutschler J, Rausis T, Bourgeois J-M, Bastian C, Zufferey D, Mohrenz IV, Fischer F (2009) Ionic liquid-coated immobilized lipase for the synthesis of methylglucose fatty acid esters. Green Chem 11:1793–1800CrossRefGoogle Scholar
  23. 23.
    Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14:432–437PubMedCrossRefGoogle Scholar
  24. 24.
    Park S, Kazlauskas RJ (2001) Improved preparation and use of room temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66:8395–8401PubMedCrossRefGoogle Scholar
  25. 25.
    Poole FC (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82PubMedCrossRefGoogle Scholar
  26. 26.
    Reichardt C (2007) Solvents and solvent effects: an introduction. Org Process Res Dev 11:105–113Google Scholar
  27. 27.
    Reichardt C (2005) Polarity on ionic liquids determined empirically by means of solvatochromic pyridinium N-phenolate betaine dyes. Green Chem 7:339–351CrossRefGoogle Scholar
  28. 28.
    Van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785PubMedCrossRefGoogle Scholar
  29. 29.
    Ventura SPM, Gonçalves AMM, Gonçalves F, Coutinho JAP (2010) Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels. Aquat Toxicol 96:290–297PubMedCrossRefGoogle Scholar
  30. 30.
    Wasserscheid P, Welton T (2002) Ionic liquids in synthesis. Wiley-VCH, WeinheimGoogle Scholar
  31. 31.
    Yang Z, Pan W (2005) Ionic liquids: green solvents for nonaqueous biocatalysis. Enzyme Microb Technol 37:19–28CrossRefGoogle Scholar
  32. 32.
    Zhao H (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Catal B Enzym 37:16–25CrossRefGoogle Scholar
  33. 33.
    Zhao H (2010) Methods for stabilizing and activating enzymes in ionic liquids—a review. J Chem Technol Biotechnol 85:891–907CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Fabian Fischer
    • 1
  • Julien Mutschler
    • 1
  • Daniel Zufferey
    • 2
  1. 1.Institute of Life TechnologiesUniversity of Applied Sciences Western SwitzerlandSion 2Switzerland
  2. 2.Institute Systems EngineeringUniversity of Applied Sciences Western SwitzerlandSion 2Switzerland

Personalised recommendations