Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: a systematic review

Review

Abstract

This article reviews current co-culture systems for fermenting mixtures of glucose and xylose to ethanol. Thirty-five co-culture systems that ferment either synthetic glucose and xylose mixture or various biomass hydrolysates are examined. Strain combinations, fermentation modes and conditions, and fermentation performance for these co-culture systems are compared and discussed. It is noted that the combination of Pichia stipitis with Saccharomyces cerevisiae or its respiratory-deficient mutant is most commonly used. One of the best results for fermentation of glucose and xylose mixture is achieved by using co-culture of immobilized Zymomonas mobilis and free cells of P. stipitis, giving volumetric ethanol production of 1.277 g/l/h and ethanol yield of 0.49–0.50 g/g. The review discloses that, as a strategy for efficient conversion of glucose and xylose, co-culture fermentation for ethanol production from lignocellulosic biomass can increase ethanol yield and production rate, shorten fermentation time, and reduce process costs, and it is a promising technology although immature.

Keywords

Ethanol production Co-culture Co-fermentation Glucose Xylose 

References

  1. 1.
    Abate C, Callieri D, Rodriguez E, Garro O (1996) Ethanol production by a mixed culture of flocculent strains of Zymomonas mobilis and Saccharomyces sp. Appl Microbiol Biotechnol 45:580–583PubMedCrossRefGoogle Scholar
  2. 2.
    Abbi M, Kuhad RC, Singh A (1996) Bioconversion of pentose sugars to ethanol by free and immobilized cells of Candida shehatae (NCL-3501): fermentation behavior. Process Biochem 31(6):555–560CrossRefGoogle Scholar
  3. 3.
    Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948PubMedGoogle Scholar
  4. 4.
    Amartey S, Jeffries T (1996) An improvement in Pichia stipitis fermentation of acid-hydrolysed hemicelllulose achieved by overliming (calcium hydroxide treatment) and strain adaptation. World J Microbiol Biotechnol 12(3):281–283CrossRefGoogle Scholar
  5. 5.
    Amore R, Kotter P, Kuster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109:89–97PubMedCrossRefGoogle Scholar
  6. 6.
    Bader J, Mast-Gerlach E, Popović MK, Bajpai R, Stahl U (2010) Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol 109:371–387PubMedCrossRefGoogle Scholar
  7. 7.
    Beck MJ, Johnson RD, Baker CS (1990) Ethanol production from glucose/xylose mixes by incorporating microbes in selected fermentation schemes. Appl Biochem Biotechnol 24–25:415–424CrossRefGoogle Scholar
  8. 8.
    Birol G, Doruker P, Kirdar B, Önsan Zİ, Ülgen K (1998) Mathematical description of ethanol fermentation by immobilized Saccharomyces cerevisiae. Process Biochem 33:763–771CrossRefGoogle Scholar
  9. 9.
    Brooks TA, Ingram LO (1995) Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol Prog 11:619–625CrossRefGoogle Scholar
  10. 10.
    Bothast RJ, Nichols NN, Dien BS (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15:867–875PubMedCrossRefGoogle Scholar
  11. 11.
    Cardona CA, Sánchez ÓJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457PubMedCrossRefGoogle Scholar
  12. 12.
    Chandrakant P, Bisaria VS (1998) Simultaneous bioconversion of cellulose and hemicelluloses to ethanol. Crit Rev Biotechnol 18(4):295–331PubMedCrossRefGoogle Scholar
  13. 13.
    Cho BK, Charusanti P, Herrgård MJ, Palsson BØ (2007) Microbial regulatory and metabolic networks. Curr Opin Biotechnol 18:360–364PubMedCrossRefGoogle Scholar
  14. 14.
    Chu BCH, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441PubMedCrossRefGoogle Scholar
  15. 15.
    Deanda K, Zhang M, Eddy C, Picataggio S (1996) Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl Environ Microbiol 62:4465–4470PubMedGoogle Scholar
  16. 16.
    De Bari I, Cuna D, Nanna F, Braccio G (2004) Ethanol production in immobilized cell bioreactors from mixed sugar syrups and enzymatic hydrolysates of steam-exploded biomass. Appl Biochem Biotechnol 114:539–557CrossRefGoogle Scholar
  17. 17.
    Delgenes JP, Escare MC, Laplace JM, Moletta R, Navarro JM (1998) Biological production of industrial chemicals, i.e. xylitol and ethanol, from lignocelluloses by controlled mixed culture systems. Ind Crops Prod 1:101–111CrossRefGoogle Scholar
  18. 18.
    Delgenes JP, Laplace JM, Moletta R, Navarro JM (1996) Comparative study of separated fermentations and cofermentation process to produce ethanol from hardwood derived hydrolysates. Biomass Bioenergy 11(4):353–360CrossRefGoogle Scholar
  19. 19.
    Delgenes JP, Moletta R, Navarro JM (1988) The ethanol tolerance of Pichia stipitis Y7124 grown on a d-xylose d-glucose and L-arabinose mixture. J Ferment Technol 66:417–422CrossRefGoogle Scholar
  20. 20.
    Department of Energy (2005) From biomass to biofuels: a roadmap to the energy future, based on a workshop, Rockville, 7–9 DecGoogle Scholar
  21. 21.
    Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266PubMedCrossRefGoogle Scholar
  22. 22.
    Doran JB, Aldrich HC, Ingram LO (1994) Saccharification and fermentation of sugar-cane bagasse by Klebsiella oxytoca P2 containing chromosomally integrated genes encoding the Zymomonas mobilis ethanol pathway. Biotechnol Bioeng 44:240–247PubMedCrossRefGoogle Scholar
  23. 23.
    Dumsday GJ, Jones K, Stanley GA, Pamment NB (1997) Recombinant organisms for ethanol production from hemicellulosic hydrolyzates—a review of recent progress. Australas Biotechnol 7(4):285–295Google Scholar
  24. 24.
    Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2 and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386PubMedCrossRefGoogle Scholar
  25. 25.
    Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genomescale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253PubMedCrossRefGoogle Scholar
  26. 26.
    Fu N, Peiris P, Markham J et al (2009) A novel co-culture process with Zymomonas mobilis and Pichia stipitis for efficient ethanol production on glucose/xylose mixtures. Enzyme Microb Technol 45(3):210–217CrossRefGoogle Scholar
  27. 27.
    Fu N, Peiris P (2008) Co-fermentation of a mixture of glucose and xylose to ethanol by Zymomonas mobilis and Pachysolen tannophilus. World J Microbiol Biotechnol 24(7):1091–1097CrossRefGoogle Scholar
  28. 28.
    Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotechnol 96:155–168PubMedCrossRefGoogle Scholar
  29. 29.
    Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241PubMedGoogle Scholar
  30. 30.
    Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146PubMedCrossRefGoogle Scholar
  31. 31.
    Grootjen DRJ, Meijlink LHHM, van der Lans RGJM, KChAM Luyben (1990) Cofermentation of glucose and xylose with immobilized Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb Technol 12:860–864CrossRefGoogle Scholar
  32. 32.
    Grootjen DRJ, van der Lans RGJM, KChAM Luyben (1990) Effects of the aeration rate on the fermentation of glucose and xylose by Pichia stipitis CBS 5773. Enzyme Microb Technol 12:20–23CrossRefGoogle Scholar
  33. 33.
    Grootjen DRJ, Jansen ML, van der Lans RGJM, Luyben KCAM (1991) Reactors in series for the complete conversion of glucose/xylose mixtures by Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb Technol 13:828–833CrossRefGoogle Scholar
  34. 34.
    Grootjen DRJ, Meijlink LHHM, Vleesenbeek R, van der Lans RGJM, Luyben KChAM (1991) Cofermentation of glucose and xylose with immobilized Pichia stipitis in combination with Saccharomyces cerevisiae. Enzyme Microb Technol 13:530–536CrossRefGoogle Scholar
  35. 35.
    Grootjen DRJ, van der Lans RGJM, Luyben KChAM (1991) Conversion of glucose/xylose mixtures by Pichia stipitis under oxygen-limited conditions. Enzyme Microb Technol 13:648–654CrossRefGoogle Scholar
  36. 36.
    Grootjen DRJ, Windemeijer MGA, van der Lans RGJM, Luyben KChAM (1990) The use of a coulter counter to investigate a mixed culture of Pichia stipitis and Saccharomyces cerevisiae. Biotechnol Tech 4(6):403–408CrossRefGoogle Scholar
  37. 37.
    Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hägerdal B, Penttila M et al (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1095PubMedCrossRefGoogle Scholar
  38. 38.
    Harish Kumar Reddy Y, Srijana M, Madhusudhan Reddy D, Reddy G (2010) Coculture fermentation of banana agro-waste to ethanol by cellulolytic thermophilic Clostridium thermocellum CT2. Afr J Biotechnol 9(13):1926–1934Google Scholar
  39. 39.
    Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedGoogle Scholar
  40. 40.
    Hodge DB, Karim MN (2002) Modeling and advanced control of recombinant Zymomonas mobilis fed-batch fermentation. Biotechnol Prog 18:572–579PubMedCrossRefGoogle Scholar
  41. 41.
    Ingram LO, Alterthum F, Conway T, Ohta K (1991) Ethanol production by Escherichia coli strains co-expressing Zymomonas pdc and adh genes. US Patent No. 5, 000, 000Google Scholar
  42. 42.
    Ingram LO, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404PubMedGoogle Scholar
  43. 43.
    Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425PubMedGoogle Scholar
  44. 44.
    Ingram LO, Gomez PF, Lai X, Moniruzzaman M, Wood BE, Yomano LP, York SW (1997) Metabolic engineering of bacteria for ethanol production. Biotechnol Bioeng 58:204–214CrossRefGoogle Scholar
  45. 45.
    Jeffries TW, Grigoriev IV, Grimwood J, Laplaza JM, Aerts A, Salamov A, Schmutz J, Lindquist E, Dehal P, Shapiro H, Jin YS, Passoth V, Richardson PM (2007) Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis. Nat Biotechnol 25(3):319–326PubMedCrossRefGoogle Scholar
  46. 46.
    Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509PubMedCrossRefGoogle Scholar
  47. 47.
    Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:320–326PubMedCrossRefGoogle Scholar
  48. 48.
    Jin YS, Jeffries TW (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng 6:229–238PubMedCrossRefGoogle Scholar
  49. 49.
    Joachimsthal EL, Rogers PL (2000) Characterization of a high productivity recombinant strain of Zymomonas mobilis for ethanol production from glucose/xylose mixtures. Appl Biochem Biotechnol 84(6):343–356PubMedCrossRefGoogle Scholar
  50. 50.
    Knauf M, Moniruzzaman M (2004) Lignocellulosic biomass processing: a perspective. Int Sugar J 106:147–150Google Scholar
  51. 51.
    Kordowska-Wiater M, Targoński Z (2001) Ethanol production on the media containing glucose and xylose by coculture of Pichia Stipitis CCY39501 and respiratory deficient mutant of Saccharomyces cerevisiae V30. Electr J Pol Agric Univ Food Sci Technol 4(2):15–28Google Scholar
  52. 52.
    Kordowska-Wiater M, Targoński Z (2002) Ethanol fermentation on glucose/xylose mixture by co-cultivation of restricted glucose catabolite repressed mutants of Pichia stipitis with respiratory deficient mutants of Saccharomyces cerevisiae. Acta Microbiol Pol 51:345–352PubMedGoogle Scholar
  53. 53.
    Krishnan MS, Ho NWY, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). Appl Biochem Biotehcnol 77–79:373–388CrossRefGoogle Scholar
  54. 54.
    Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391PubMedCrossRefGoogle Scholar
  55. 55.
    Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, Van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409PubMedCrossRefGoogle Scholar
  56. 56.
    Laplace JM, Delgenes JP, Moletta R (1992) Alcoholic glucose and xylose fermentations by the coculture process: compatibility and typing of associated strains. Can J Microbiol 38:654–658PubMedCrossRefGoogle Scholar
  57. 57.
    Laplace JM, Delgenes JP, Moletta R, Navarro JM (1993) Effects of culture conditions on the co-fermentation of a glucose and xylose mixture to ethanol by a mutant of Saccharomyces diastaticus associated with Pichia stipitis. Appl Microbiol Biotechnol 39:760–763CrossRefGoogle Scholar
  58. 58.
    Laplace JM, Delgenes JP, Moletta R, Navarro JM (1993) Cofermentation of glucose and xylose to ethanol by a respiratory-deficient mutant of Saccharomyces cerevisiae co-cultivated with a xylose-fermenting yeast. J Ferment Bioeng 75:207–212CrossRefGoogle Scholar
  59. 59.
    Laplace JM, Delgenes JP, Moletta R, Navarro JM (1993) Ethanol production from glucose and xylose by separated and coculture process using high cell density systems. Process Biochem 28:519–525CrossRefGoogle Scholar
  60. 60.
    Laplace JM, Delgenes JP, Moletta R, Navarro JM (1991) Combined alcoholic fermentation of d-xylose and d-glucose by four selected microbial strains: process considerations in relation to ethanol tolerance. Biotechnol Lett 13(6):445–450CrossRefGoogle Scholar
  61. 61.
    Latif F, Rajoka MI (2001) Production of ethanol and xylitol from corn cobs by yeasts. Bioresour Technol 77(1):57–63PubMedCrossRefGoogle Scholar
  62. 62.
    Lebeau T, Jouenne T, Junter GA (1997) Simultaneous fermentation of glucose and xylose by pure and mixed cultures of Saccharomyces cerevisiae and Candida shehatae immobilized in a two-chambered bioreactor. Enzyme Microb Technol 21:265–272CrossRefGoogle Scholar
  63. 63.
    Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24PubMedCrossRefGoogle Scholar
  64. 64.
    Lee YS, Lee WG, Chang YK, Chang HN (1995) Modelling of ethanol production by Saccharomyces cerevisiae from a glucose and maltose mixture. Biotechnol Lett 17:791–796CrossRefGoogle Scholar
  65. 65.
    Lee WC, Huang CT (2000) Modeling of ethanol fermentation using Zymomonas mobilis ATCC 10988 grown on the media containing glucose and fructose. Biochem Eng J 4:217–227CrossRefGoogle Scholar
  66. 66.
    Leksawasdi N, Joachimsthal EL, Rogers PL (2001) Mathematical modeling of ethanol production from glucose/xylose mixtures by recombinant Zymomonas mobilis. Biotechnol Lett 23:1087–1093CrossRefGoogle Scholar
  67. 67.
    Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Environ Microbiol 69:627–642Google Scholar
  68. 68.
    Maki M, Leung KT, Qin W (2009) The prospects of cellulase-producing bacteria for the bioconversion of lignocellulosic biomass. Int J Biol Sci 5:500–516PubMedGoogle Scholar
  69. 69.
    Martin C, Marcet M, Almazan O, Jonsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98(9):1767–1777PubMedCrossRefGoogle Scholar
  70. 70.
    Mielenz JR (2001) Ethanol production from biomass: technology and commercialization status. Curr Opin Microbiol 4:324–329PubMedCrossRefGoogle Scholar
  71. 71.
    Ng TK, Ben-Bassat A, Zeikus JG (1981) Ethanol production by thermophilic bacteria: fermentation of cellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum. Appl Environ Microbiol 41(6):1337–1343PubMedGoogle Scholar
  72. 72.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900PubMedGoogle Scholar
  73. 73.
    Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Metabolic engineering of Klebsiella oxytoca M5A1 for ethanol production from xylose and glucose. Appl Environ Microbiol 57:2810–2815PubMedGoogle Scholar
  74. 74.
    Qian M, Tian S, Li X, Zhang J, Pan Y, Yang X (2006) Ethanol production from dilute-acid softwood hydrolysate by co-culture. Appl Biochem Biotechnol 134:273–283PubMedCrossRefGoogle Scholar
  75. 75.
    Okuda N, Ninomiya K, Katakura Y, Shioya S (2008) Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae. J Biosci Bioeng 105(2):90–96PubMedCrossRefGoogle Scholar
  76. 76.
    Olsson L, Hahn-Hägerdal B (1995) Kinetics of ethanol production by recombinant Escherichia coli KO11. Biotechnol Bioeng 45:356–365PubMedCrossRefGoogle Scholar
  77. 77.
    Patle S, Lal B (2007) Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis. Biotechnol Lett 29(12):1839–1843PubMedCrossRefGoogle Scholar
  78. 78.
    Potera C (2006) Process with biofuels will depend on, drive microbiology research. Microbe 1:317–322Google Scholar
  79. 79.
    Pramanik J, Keasling JD (1997) Stoichiometric model of Escherichia coli metabolism: incorporation of growth-rate dependent biomass composition and mechanistic energy requirements. Biotechnol Bioeng 56:398–421PubMedCrossRefGoogle Scholar
  80. 80.
    Reed LJ, Palsson BØ (2003) Thirteen years of building constraint-based in silicon models of Escherichia coli. J Bacteriol 185(9):2692–2699PubMedCrossRefGoogle Scholar
  81. 81.
    Rouhollah H, Iraj N, Giti E, Sorah A (2007) Mixed sugar fermentation by Pichia stipitis, Saccharomyces cerevisiae, and an isolated xylose-fermenting Kluyveromyces marxianus and their cocultures. Afr J Biotechnol 6(9):1110–1114Google Scholar
  82. 82.
    Sánchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures of d-glucose and d-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77:641–648CrossRefGoogle Scholar
  83. 83.
    Service RF (2007) Cellulosic ethanol: biofuel researchers prepare to reap a new harvest. Science 315:1488–1491PubMedCrossRefGoogle Scholar
  84. 84.
    Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394PubMedGoogle Scholar
  85. 85.
    Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804PubMedCrossRefGoogle Scholar
  86. 86.
    Szambelan K, Nowak J, Czarnecki Z (2004) Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnol Lett 26:845–848PubMedCrossRefGoogle Scholar
  87. 87.
    Taherzadeh MJ, Karimi K (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2(3):472–499Google Scholar
  88. 88.
    Takuma S, Nakashima N, Tantirungkij M, Kinoshita S, Okada H, Seki T et al (1991) Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol 28–29:327–340PubMedCrossRefGoogle Scholar
  89. 89.
    Taniguchi M, Itaya T, Tohma T, Fujii M (1997) Ethanol production from a mixture of glucose and xylose by co-culture of Pichia stipitis and a respiratory-deficient mutant of Saccharomyces cerevisiae. J Ferment Bioeng 83:364–370CrossRefGoogle Scholar
  90. 90.
    Taniguchi M, Itaya T, Tohma T, Fujii M (1997) Ethanol production from a mixture of glucose and xylose by a novel co-culture system with two fermentors and two microfiltration modules. J Ferment Bioeng 84(1):59–64CrossRefGoogle Scholar
  91. 91.
    Taniguchi M, Tanaka T (2004) Clarification of interactions among microorganism and development of co-culture systems for production of useful substances. Adv Biochem Eng Biotechnol 90:35–62PubMedGoogle Scholar
  92. 92.
    Thatipamala R, Rohani S, Hill GA (1992) Effects of high product and substrate inhibitions on the kinetics and biomass and product yields during ethanol batch fermentation. Biotechnol Bioeng 40:289–297PubMedCrossRefGoogle Scholar
  93. 93.
    Varma A, Palsson BØ (1993) Metabolic capabilities of Escherichia coli. I. Synthesis of biosynthetic precursors and cofactors. J Theor Biol 165:477–502PubMedCrossRefGoogle Scholar
  94. 94.
    Varma A, Palsson BØ (1993) Metabolic capabilities of Escherichia coli. II. Optimal growth patterns. J Theor Biol 165:503–522CrossRefGoogle Scholar
  95. 95.
    Varma A, Palsson BØ (1994) Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild type Escherichia coli W3110. Appl Environ Microbiol 60:3724–3731PubMedGoogle Scholar
  96. 96.
    Wood BE, Ingram LO (1992) Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulose from Clostridium thermocellum. Appl Environ Microbiol 58:2103–2110PubMedGoogle Scholar
  97. 97.
    Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocelluloses: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34PubMedCrossRefGoogle Scholar
  98. 98.
    Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243PubMedCrossRefGoogle Scholar
  99. 99.
    Zhou S, Davis FC, Ingram LO (2001) Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol 67:6–14PubMedCrossRefGoogle Scholar
  100. 100.
    Zhou S, Ingram LO (1999) Engineering endoglucanase-secreting strains of ethanologenic Klebsiella oxytoca P2. J Ind Microbiol Biotechnol 22:600–607PubMedCrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations