Advertisement

Journal of Industrial Microbiology & Biotechnology

, Volume 37, Issue 12, pp 1271–1287 | Cite as

Microbial lipids from renewable resources: production and characterization

  • Ramalingam Subramaniam
  • Stephen Dufreche
  • Mark Zappi
  • Rakesh BajpaiEmail author
Review

Abstract

A number of microorganisms belonging to the genera of algae, yeast, bacteria, and fungi have ability to accumulate neutral lipids under specific cultivation conditions. The microbial lipids contain high fractions of polyunsaturated fatty acids and have the potential to serve as a source of significant quantities of transportation fuels. This paper reviews the current state of the art of this field. It summarizes the various microorganism used, feed stocks available, environmental factors that influence growth of cells and accumulation of lipids, major fatty acid composition of lipids, and the technology.

Keywords

Algae Yeast Fatty acid composition Lipids Economics 

References

  1. 1.
    Abu OA, Tewe OO, Losel DM, Onifade AA (2000) Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Bioresour Technol 72:189–192CrossRefGoogle Scholar
  2. 2.
    Aki T, Nagahata Y, Ishihara K, Tanaka Y, Morinaga T, Higashiyama K, Akimoto K, Fugikawa S, Kawamoto S, Shigeta S, Ono K, Suzuki O (2001) Production of arachidonic acid by filamentous fungus, Mortierella alliacia strain YN-15. J Am Oil Chemists Soc 78(6):599–604CrossRefGoogle Scholar
  3. 3.
    Alvarez HM, Steinbuchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376PubMedCrossRefGoogle Scholar
  4. 4.
    Alvarez RM, Rodriguez B, Romano JM, Diaz AO, Gomez E, Miro D, Navarro L, Saura G, Garcia JL (1992) Lipid accumulation in Rhodotorula glutinis on sugar cane molasses in single-stage continuous culture. World J Microbiol Biotechnol 8:214–215CrossRefGoogle Scholar
  5. 5.
    Alvarez HM, Kalscheuer R, Steinbuchel A (1997) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effect of inhibitors and polyethylene glycol. Fett/Lipid 99:239–246CrossRefGoogle Scholar
  6. 6.
    Al-Widyan MI, Al-Shyoukh AO (2002) Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresour Technol 85:253–256PubMedCrossRefGoogle Scholar
  7. 7.
    Anaga A, Abu GO (1996) A laboratory-scale cultivation of Chlorella and Spirulina using waste effluent a fertilizer company in Nigeria. Bioresour Technol 58:93–95CrossRefGoogle Scholar
  8. 8.
    Andrade MR, Costa JAV (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264(1–4):130–134CrossRefGoogle Scholar
  9. 9.
    Andre A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Indus Crops and Products 31:407–416CrossRefGoogle Scholar
  10. 10.
    Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056PubMedCrossRefGoogle Scholar
  11. 11.
    Antolin G, Tinaut FV, Briceno Y, Castano V, Perez C, Ramirez AI (2002) Optimization of biodiesel production by sunflower oil transesterification. Bioresour Technol 83:111–114PubMedCrossRefGoogle Scholar
  12. 12.
    Athalye SK, Garcia RA, Wen Z (2009) Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare. J Agric Food Chem 57:2739–2744PubMedCrossRefGoogle Scholar
  13. 13.
    Banerjee A, Sharma R, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22(3):245–279PubMedCrossRefGoogle Scholar
  14. 14.
    Barupal DK, Kind T, Kothari SL, Lee DY, Fiehn O (2010) Hydrocarbon phenotyping of algal species using pyrolysis gas chromatography mass spectrometry. BMC Biotechnology 10:40–48PubMedCrossRefGoogle Scholar
  15. 15.
    Beltran G, Novo M, Guillamón JM, Mas A, Rozes N (2008) Effect of fermentation temperature and culture media on the yeast lipid composition and wine volatile compounds. Int J Food Microbiol 121:169–177PubMedCrossRefGoogle Scholar
  16. 16.
    Benson BC, Rusch KA (2006) Investigation of the light dynamics and their impact on algal growth rate in a hydraulically integrated serial turbidostat algal reactor (HISTAR). Aquacultural Eng 35:122–134CrossRefGoogle Scholar
  17. 17.
    Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Jouve CM, Nicaud JM (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387PubMedCrossRefGoogle Scholar
  18. 18.
    Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401CrossRefGoogle Scholar
  19. 19.
    Bouaid A, Martinez M, Aracil J (2007) Long storage stability of biodiesel from vegetable and used frying oils. Fuel 86:2596–2602CrossRefGoogle Scholar
  20. 20.
    Boussiba S, Vonshak A, Cohen Z, Avissar Y, Richmond A (1987) Lipid and biomass production by the halotolerant microalga nannochloropsis salina. Biomass 12:37–47CrossRefGoogle Scholar
  21. 21.
    Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577CrossRefGoogle Scholar
  22. 22.
    Brown BD, Hsu KH, Hammond EG, Glatz BA (1989) A relationship between growth and lipid accumulation in Candida curvata D. J Ferment Bioeng 68(5):344–352CrossRefGoogle Scholar
  23. 23.
    Bruton T, Lyons H, Lerat Y, Stanley M, BoRasmussen M (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Sustainable Energy IrelandGoogle Scholar
  24. 24.
    Bunyakiat K, Makmee S, Sawangkeaw R, Ngamprasertsith S (2006) Continuous production of biodiesel via transesterification from vegetable oil supercritical methanol. Energy Fuels 20:812–817CrossRefGoogle Scholar
  25. 25.
    Bush RA, Hall KM (2009) Process for the production of ethanol from algae. US Patent No. 7507554 B2, Issued March 24Google Scholar
  26. 26.
    Cesar ADS, Batalha MO (2010) Biodiesel production from castor oil in Brazil: a difficult reality. Energy Policy 38:4031–4039CrossRefGoogle Scholar
  27. 27.
    Chang EH, Yang SS (2003) Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bul Acad Sin 44:43–52Google Scholar
  28. 28.
    Chen HC, Liu TM (1997) Inoculum effects on the production of γ-linolenic acid by the shake culture of Cunninghamella echinulata CCRC 31840. Enzym Microbiol Technol 21:137–142CrossRefGoogle Scholar
  29. 29.
    Cheng L, Zhang L, Chen H, Gao C (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Pur Technol 50(3):324–329CrossRefGoogle Scholar
  30. 30.
    Chinnasamy S, Bhatnagar A, Claxton R, Das KC (2010) Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol 101:6751–6760PubMedCrossRefGoogle Scholar
  31. 31.
    Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105PubMedCrossRefGoogle Scholar
  32. 32.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306PubMedCrossRefGoogle Scholar
  33. 33.
    Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131PubMedCrossRefGoogle Scholar
  34. 34.
    Chiu SY, Kao CY, Tsai MT, Ong SC, Chen CH, Lin CS (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Biroesour Technol 100:833–838CrossRefGoogle Scholar
  35. 35.
    Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34(5):461–465CrossRefGoogle Scholar
  36. 36.
    Colla LM, Reinehr CO, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98:1489–1493PubMedCrossRefGoogle Scholar
  37. 37.
    S&T2 Consultants (2009) GHG emission reductions from world biofuel production and use. Prepared for Global Renewable Fuels AllianceGoogle Scholar
  38. 38.
    Converti A, Casazza AA, Ortiz EY, Perego P, Borghi MD (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Proc 48:1146–1151Google Scholar
  39. 39.
    Costa JAV, de Morais MG (2010) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol (in press)Google Scholar
  40. 40.
    Coyle W (2007) The future of biofuels: a global perspective economic research service USDA. www.ers.usda.gov/amberwaves
  41. 41.
    Dai C, Tao J, Xie F, Dai Y, Zhao M (2007) Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. Afr J Biotechnol 6(18):2130–2134Google Scholar
  42. 42.
    de Morais MG, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J Biotechnol 129:439–445PubMedCrossRefGoogle Scholar
  43. 43.
    Dean AP, Sigee DC, Estrada B, Pittman JK (2010) Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresour Technol 101:4499–4507PubMedCrossRefGoogle Scholar
  44. 44.
    Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conv Management 44:2093–2109CrossRefGoogle Scholar
  45. 45.
    Demirbas A (2009) Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification. Energy Conv Management 50:923–927CrossRefGoogle Scholar
  46. 46.
    Duhalt RV, Greppin H (1987) Growth and production of cell constituents in batch cultures of Botryococcus sudeticus. Phytochemistry 26(4):885–889CrossRefGoogle Scholar
  47. 47.
    Dyal SD, Narine SS (2005) Implications for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int 38:445–467CrossRefGoogle Scholar
  48. 48.
    Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361PubMedCrossRefGoogle Scholar
  49. 49.
    Economou CN, Makri A, Aggelis G, Pavlou S, Vayenas DV (2010) Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol 101:1385–1388PubMedCrossRefGoogle Scholar
  50. 50.
    El-Baky HHA, El-Baz FK, El-Baroty GS (2004) Production of lipids rich in omega 3 fatty acids from the halotolerant alga Dunaliella salina. Biotechnology 3(1):102–108CrossRefGoogle Scholar
  51. 51.
    Emelyanova E (1997) Lipid and γ-linolenic acid production by Mucor inaquisporus. Process Biochem. 32(3):173–177CrossRefGoogle Scholar
  52. 52.
    Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI (2000) Arachidonic acid production by Mortierella alpine with growth-coupled lipid synthesis. Proc Chem 35:1171–1175Google Scholar
  53. 53.
    Ethier S, Woisard K, Vaughan D, Wen Z (2010) Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol (in press)Google Scholar
  54. 54.
    Evans CT, Ratledge C (1984) Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14. J Gen Microbiol 130:1705–1710Google Scholar
  55. 55.
    Fadaly HAE, Naggar NEAE, Marwan ESM (2009) Single cell oil production by an oleaginous yeast strain in a low cost cultivation medium. Res J Microbiol 4(8):301–313CrossRefGoogle Scholar
  56. 56.
    Fakas S, Panayotou MG, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzym Microb Technol 40(5):1321–1327CrossRefGoogle Scholar
  57. 57.
    Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G (2009) Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol 100:6118–6120PubMedCrossRefGoogle Scholar
  58. 58.
    Fakas S, Papanikolaou S, Batsos A, Panayotou MG, Malloucho A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580CrossRefGoogle Scholar
  59. 59.
    Feng FY, Yang W, Jiang GZ, Xu YN, Kuang TY (2005) Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) by addition of glucose and sodium thiosulphate to culture medium. Process Biochem 40:1315–1318CrossRefGoogle Scholar
  60. 60.
    Feng Y, Li C, Zhang D (2010) Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresour Technol (in press)Google Scholar
  61. 61.
    Fidalgo JP, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipids classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105–116CrossRefGoogle Scholar
  62. 62.
    Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic Chlorella protothecoides. Appl Energy 87:756–761CrossRefGoogle Scholar
  63. 63.
    Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23:471–499PubMedCrossRefGoogle Scholar
  64. 64.
    Ge Y, Liu J, Tian G (2010) Growth characteristics of Botryococcus braunii 765 under high CO2 concentrations in photobioreactor. Bioresour Technol (in press)Google Scholar
  65. 65.
    Ghanem K, Sabry SA, Yusef HH (1990) Some physiological factors influencing lipid production by Rhodotorula glutinis from Egyptian beet molasses. J Islamic Acad Sci 3(4):305–309Google Scholar
  66. 66.
    Global Renewable Fuels Alliance (2009) http://www.globalrfa.org/pr_120909.php
  67. 67.
    Gordon JM, Polle JEW (2007) Ultrahigh bioproductivity from algae. Appl Microbiol Biotechnol 76:969–975PubMedCrossRefGoogle Scholar
  68. 68.
    Gouda MK, Omar SH, Aouad LM (2008) Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol 24:1703–1711CrossRefGoogle Scholar
  69. 69.
    Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuel production. J Ind Microbiol Biotechnol 36(2):269–274PubMedCrossRefGoogle Scholar
  70. 70.
    Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507CrossRefGoogle Scholar
  71. 71.
    Grima ME, Seville FJ, Perez MSJ, Camacho AGF (1996) A study on simultaneous photo limitation and photoinhibition in dense microalgal cultures taking into account incident and averaged irradiance. J Biotechnol 45:59–69CrossRefGoogle Scholar
  72. 72.
    Haas MJ (2005) Improving the economics of biodiesel production through the use of low value lipids as feedstocks: vegetable oil soap stock. Fuel Process Technol 86:1087–1096CrossRefGoogle Scholar
  73. 73.
    Hansen CE, Rossi P (1991) Effects of culture conditions on accumulation of arachidonic and eicosapentaenoic acids in cultured cells of Rhytidzadelphus squarrosus and Eurhynchzum strzatum. Phytochemistry 30(6):1837–1841CrossRefGoogle Scholar
  74. 74.
    Hassan M, Blanc PJ, Pareilleux A, Goma G (1995) Production of cocoa butter equivalents from prickly-pear fermentation by an unsaturated fatty acid auxotroph of Crytococcus curvatus grown in batch culture. Process Biochem 30:629–634Google Scholar
  75. 75.
    Hassan M, Blanc PJ, Granger LM, Pareilleux A, Goma G (1996) Influence of nitrogen and iron limitations on lipid production by Crytococcus curvatus grown in batch and fed-batch culture. Process Biochem 31(4):355–361CrossRefGoogle Scholar
  76. 76.
    Hawash S, Kamal N, Zaher F, Kenawi O, Diwani GE (2009) Biodiesel fuel from Jatropha oil via non-catalytic supercritical methanol transesterification. Fuel 88:579–582CrossRefGoogle Scholar
  77. 77.
    Hirsch RL (2005) Peaking of world oil production: impacts, mitigation & risk management. National energy technology laboratory. http://www.netl.doe.gov
  78. 78.
    Hiruta O, Futumura T, Takebe H, Satoh A, Kamisaka Y, Yokochi T, Nakahara T, Suzuki O (1996) Optimization and scale-up of γ-linolenic acid production by Mortierella ramanniana MM 15–1, a high γ-linolenic acid producing mutant. J Ferment Bioeng 82(4):366–370CrossRefGoogle Scholar
  79. 79.
    Hiruta O, Yamamura K, Takebe H, Futamura T, Iinuma K, Tanaka H (1997) Application of Maxblend fermentor for microbial processes. J Ferment Bioeng 83(1):79–86CrossRefGoogle Scholar
  80. 80.
    Holdsworth JE, Veenhuis M, Ratledge C (1988) Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol 134:2907–2915PubMedGoogle Scholar
  81. 81.
    Hossain ABMS, Salleh A (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4(3):250–254CrossRefGoogle Scholar
  82. 82.
    Hsieh HC, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926PubMedCrossRefGoogle Scholar
  83. 83.
    Hsueh HT, Li WJ, Chen HH, Chu H (2009) Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculata. J Photochem Photobiol B: Biol 95:33–39CrossRefGoogle Scholar
  84. 84.
    Hu HH, Gao KS (2003) Optimization of growth and fatty acid composition of a unicellular marine picoplankton Nannochloropsis sp. with enriched carbon sources. Biotechnol Lett 25:421–425PubMedCrossRefGoogle Scholar
  85. 85.
    Hu H, Gao K (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration Biotechnol Lett 28:987–992Google Scholar
  86. 86.
    Hu Q, Zarmi Y, Richmond A (1998) Combined effects of light intensity, light path and culture density on output rate of Spirulina platensis (cyanobacteria). Eur J Phycol 33:165–171CrossRefGoogle Scholar
  87. 87.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639PubMedCrossRefGoogle Scholar
  88. 88.
    Hu C, Zhao X, Zhao J, Wu S, Zhao ZK (2009) Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresour Technol 100:4843–4847PubMedCrossRefGoogle Scholar
  89. 89.
    Huang C, Zong M, Wu H, Liu Q (2009) Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol 100:4535–4538PubMedCrossRefGoogle Scholar
  90. 90.
    Hughes E, Benemann J (1997) Biological fossil CO2 mitigation. Energy Convers Manag 38:S467–S473CrossRefGoogle Scholar
  91. 91.
    Hui L, Wan C, Hai-tao D, Xue-jiao C Qi-fa Z, Yu-hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol (in press)Google Scholar
  92. 92.
    Huntley ME, Redalje DG (2006) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal, mitigation and adaption strategies for global change. http://www.hrbp.com/PDF/Huntley%20&%20Redalje%202006.pdf
  93. 93.
    IEA/OECD (1999) CO2 emissions from fuel combustionGoogle Scholar
  94. 94.
    Illman AM, Scragg AH, Shales SW (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzym Microb Technol 27:631–635CrossRefGoogle Scholar
  95. 95.
  96. 96.
    International Energy Outlook (2010) Appendix G: projections of liquid fuels and other petroleum production in five cases. http://www.eia.doe.gov/oiaf/ieo/pdf/ieopol.pdf
  97. 97.
    Ishida M, Haga R, Odawara Y (1982) Anaerobic digestion process. US Patent 4354936. Issued October 19 1982Google Scholar
  98. 98.
    Jiang Y, Chen F (2000) Effect of medium glucose concentration and pH on docosahexaenoic acid content of heterotrophic Crypthecodinium cohnii. Process Biochem 35:1205–1209CrossRefGoogle Scholar
  99. 99.
    Johnson MB, Wen ZY (2010) Development of an attached microalgal growth system for biofuel production. Appl Microbiol Biotechnol 85:525–534PubMedCrossRefGoogle Scholar
  100. 100.
    Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energy Convers Mgmt 38:505–510CrossRefGoogle Scholar
  101. 101.
    Kalayasiri P, Jayashke N, Krisnangkura K (1996) Survey of seed oils for use as diesel fuels. J Am Oil Chem Soc 73:471–474CrossRefGoogle Scholar
  102. 102.
    Kalscheuer R, Torsten Stolting T, Steinbuchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536CrossRefGoogle Scholar
  103. 103.
    Kang HK, Lee JH, Kim D, Day DF, Robyt JF, Park KH, Moon TW (2004) Cloning and expression of Lipomyces starkeyi α-amylase in Escherichia coli and determination of some of its properties. FEMS Microbiol Lett 233:53–64PubMedCrossRefGoogle Scholar
  104. 104.
    Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582CrossRefGoogle Scholar
  105. 105.
    Karatay SE, Donmez G (2010) Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour Technol 101:7988–7990CrossRefGoogle Scholar
  106. 106.
    Kargbo DM (2010) Biodiesel production from municipal sewage sludges. Energy fuels 24:2791–2794CrossRefGoogle Scholar
  107. 107.
    Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R, Katoh S (2006) Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng 102(5):442–446PubMedCrossRefGoogle Scholar
  108. 108.
    Khotimchencho SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79CrossRefGoogle Scholar
  109. 109.
    Kim MK, Park JW, Park CS, Kim SJ, Jeune KH, Chang MU, Acreman J (2007) Enhanced production of Scenedesmus spp. (green microalgae) using a new medium containing fermented swine wastewater. Bioresour Technol 98:2220–2228PubMedCrossRefGoogle Scholar
  110. 110.
    Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766CrossRefGoogle Scholar
  111. 111.
    Knothe G, Krahl J, Van Gerpen J (2005) The biodiesel handbook. Champaign, IL, USACrossRefGoogle Scholar
  112. 112.
    Kojima E, Zhang K (1999) Growth and hydrocarbon production from microalga Botryococcus braunii in bubble column photobioreactors. J Biosci Bioeng 87:811–815PubMedCrossRefGoogle Scholar
  113. 113.
    Koku H, Eroglu I, Gunduz U, Yucel M, Turker L (2003) Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy 28:381–388CrossRefGoogle Scholar
  114. 114.
    Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18PubMedCrossRefGoogle Scholar
  115. 115.
    Lang X, Dalai AK, Bakhshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of biodiesels from various bio-oils. Bioresour Technol 80:53–62PubMedCrossRefGoogle Scholar
  116. 116.
    Leman J, Bednarski W, Tomasik J (1990) Influence of cultivation conditions on the composition of oil produced by Candida curvata D. Biol Wastes 31:1–15CrossRefGoogle Scholar
  117. 117.
    Lester WW, Adams MS, Farmer AM (1988) Effects of light and temperature on photosynthesis of the nuisance alga Cladophora glomerata (L.) Kutz from Green Bay, Michigan. New Phytol 109:53CrossRefGoogle Scholar
  118. 118.
    Li W, Du W, Li YH, Liu DH, Zhao ZB (2007) Enzymatic transesterification of yeast oil for biodiesel fuel production. Chin J Process Eng 7(1):137–140Google Scholar
  119. 119.
    Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98(4):764–771PubMedCrossRefGoogle Scholar
  120. 120.
    Li Y, Zhaob Z, Bai F (2007) High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzym Microbiol Technol 41:312–317CrossRefGoogle Scholar
  121. 121.
    Li Q, Du W, Liu D (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756PubMedCrossRefGoogle Scholar
  122. 122.
    Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81(4):629–636PubMedCrossRefGoogle Scholar
  123. 123.
    Li M, Liu GL, Chi Z, Chi ZM (2010) Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rohodotorula mucilaginosa TJY15a. Biomass Bioenergy 34:101–107CrossRefGoogle Scholar
  124. 124.
    Li X, Hu HY, Gan K, Yang J (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecol Eng 36:379–381CrossRefGoogle Scholar
  125. 125.
    Li Y, Han D, Sommerfeld M, Hu Q (2010c) Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresour Technol (in press)Google Scholar
  126. 126.
    Liang Y, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101:7581–7586PubMedCrossRefGoogle Scholar
  127. 127.
    Liang Y, Sarkany N, Cui Y, Blackburn JW (2010) Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour Technol 101:6745–6750PubMedCrossRefGoogle Scholar
  128. 128.
    Liang Y, Sarkany N, Cui Y, Yesuf J, Trushenski J, Blackburn JW (2010) Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresour Technol 101:3626–3627Google Scholar
  129. 129.
    Liu GQ, Jin XC (2008) Screening and optimization of microbial lipid production by Thannidium sp., a novel oleaginous fungus isolated from forest soil. J Biotechnol 136:402–459Google Scholar
  130. 130.
    Liu B, Zhao ZB (2007) Biodiesel production by direct methanolysis of oleaginous microbial biomass. J Chem Technol Biotechnol 82:775–780CrossRefGoogle Scholar
  131. 131.
    Liu ZY, Wang GC, Zhou BC (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99:4717–4722PubMedCrossRefGoogle Scholar
  132. 132.
    Liu J, Haung J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F (2010) Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol 101:8658–8663PubMedCrossRefGoogle Scholar
  133. 133.
    Liu J, Haung J, Sun Z, Zhong Y, Jiang Y, Chen F (2010b) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol (in press)Google Scholar
  134. 134.
    Luo HP, Al-Dahlan MH (2004) Analyzing and modeling of photobioreactors by combining first principles of physiology and hydrodynamics. Biotechnol Bioeng 85:382–393PubMedCrossRefGoogle Scholar
  135. 135.
    Lv JM, Cheng LH, Xu XH, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804PubMedCrossRefGoogle Scholar
  136. 136.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  137. 137.
    Makri A, Fakas S, Aggelis G (2010) Metabolic activities of biotechnological interest in Yarrowia lipolytica grown on glycerol in repeated batch cultures. Bioresour Technol 101:2351–2358PubMedCrossRefGoogle Scholar
  138. 138.
    Mamatha SS, Ravi R, Venkateswaran G (2009) Medium optimization of gamma linolenic acid production in Mucor rouxii CFR–G15 using RSM. Food Bioprocess Technol 1:405–409CrossRefGoogle Scholar
  139. 139.
    Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84(2):281–291PubMedCrossRefGoogle Scholar
  140. 140.
    Marin RA, Espinosa MLG, Stephenson T (2010) Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour Technol 101:58–64CrossRefGoogle Scholar
  141. 141.
    Matsunaga T, Matsumoto M, Maeda Y, Sugiyama H, Sato R, Tanaka T (2009) Characterization of marine microalga, Scenedesmus sp strain JPCC GA0024 toward biofuel production. Biotechnol Lett 31(9):1367–1372PubMedCrossRefGoogle Scholar
  142. 142.
    Meesters P, Huijberts GNM, Eggink G (1996) High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol 45:575–579CrossRefGoogle Scholar
  143. 143.
    Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5CrossRefGoogle Scholar
  144. 144.
    Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol Biotechnol 17:477–489CrossRefGoogle Scholar
  145. 145.
    Miao X, Wu Q (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93PubMedCrossRefGoogle Scholar
  146. 146.
    Mittelbach M, Remschmidt C (2004) Biodiesel—the comprehensive handbook. Graz, AustriaGoogle Scholar
  147. 147.
    Miyao M (2003) Molecular evolution and genetic engineering of C4 photosynthetic enzymes. J Exp Bot 54:179–189PubMedCrossRefGoogle Scholar
  148. 148.
    Monthly Biodiesel Production Report (2009) U.S. energy information administration. http://www.eia.doe.gov/cneaf/solar.renewables/page/biodiesel/biodiesel.pdf
  149. 149.
    Morita T, Konishi M, Fukuoka T, Imura T, Kitamoto D (2007) Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317. J Biosci Bioeng 104(1):78–81PubMedCrossRefGoogle Scholar
  150. 150.
    Murphy D (1991) Storage lipid bodies in plants and other organisms. Prog Lipid Res 29:299–324Google Scholar
  151. 151.
    Naganuma T, Uzuka Y, Tanaka K (1985) Physiological factors affecting total cell number and lipid content of the yeast, Lipomyces starkeyi. J Gen Appl Microbiol 31:29–37CrossRefGoogle Scholar
  152. 152.
    Naim N, Saad RR, Naim MS (1985) Production of lipids and sterols by Fusarium oxysporum (Schlecht). Utilization of some agro-industrial by-products as additives and basal medium. Agric Wastes 14:207–220CrossRefGoogle Scholar
  153. 153.
    Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeong HS, Kim NY, Cho JS, Yoon WB, Lee SY, Kang DH, Lee HY (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng 108(5):429–434PubMedCrossRefGoogle Scholar
  154. 154.
    Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces: possible carbon source for antibiotics. Microbiol 140:931–943CrossRefGoogle Scholar
  155. 155.
    Orpez R, Martinez ME, Hodaifa G, El Yousfi F, Jbari N, Sanchez S (2009) Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 246:625–630CrossRefGoogle Scholar
  156. 156.
    Pahl SL, Lewis DM, Chen F, King D (2009) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariphyceae): effect of some environmental factors. J Biosci Bioeng (in press)Google Scholar
  157. 157.
    Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82:43–49PubMedCrossRefGoogle Scholar
  158. 158.
    Papanikolaou S, Komaitis M, Aggelis G (2004) Single cell oil (SCO) production by Mortierella isabellina grown on high-sugar content media. Bioresour Technol 95:287–291PubMedCrossRefGoogle Scholar
  159. 159.
    Papanikolaou S, Galiotou-Panayotou M, Chevalot I, Komaitis M, Marc I, Aggelis G (2006) Influence of glucose and saturated free-fatty acid mixtures on citric acid and lipid production by Yarrowia lipolytica. Curr Microbiol 52:134–142PubMedCrossRefGoogle Scholar
  160. 160.
    Papanikolaou S, Fakas S, Fick M, Chevalot I, Panayotou MG, Komaitis M, Marc M, Aggelis G (2008) Biotechnological valorisation of raw glycerol discharged after bio-diesel (fatty acid methyl esters) manufacturing process: production of 1, 3-propendiol, citric acid and single cell oil. Biomass Bioenergy 32:60–71CrossRefGoogle Scholar
  161. 161.
    Patil S (2010) Lipid production from glucose and starch using Lipomyces starkeyi. M.S. thesis submitted to the Graduate School, UL Lafayette, Chemical Engineering Department, Lafayette, LA, USAGoogle Scholar
  162. 162.
    Peng X, Chen H (2008) Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol 99:3885–3889PubMedCrossRefGoogle Scholar
  163. 163.
    Peterson CL, Reece DL, Thompson JC, Beck SM, Chase C (1996) Ethyl ester of rapeseed used as a biodiesel fuel—a case study. Biomass Bioenergy 10:331–336CrossRefGoogle Scholar
  164. 164.
    Pradhan A, Shrestha DS, van Gerpen J, Duffield J (2008) The energy balance of soybean oil biodiesel production: a review of past studies. Trans Am Soc Agric Biol Engrs 51(1):185–194Google Scholar
  165. 165.
    Pruvost J, Vooren GV, Cogne G, Legrand J (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour Technol 100:5988–5995PubMedCrossRefGoogle Scholar
  166. 166.
    Raines CA (2006) Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. Plant Cell Environ 29:331–339PubMedCrossRefGoogle Scholar
  167. 167.
    Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007) Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresour Technol 98:560–564PubMedCrossRefGoogle Scholar
  168. 168.
    Rao AR, Sarada R, Ravishankar GA (2007) Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J Microbiol Biotechnol 17:414–419Google Scholar
  169. 169.
    Rasheva T, Kujumdzieva A, Hallet JN (1997) Lipid production by Monascus purpureus albino strain. J Biotechnol 56:217–224CrossRefGoogle Scholar
  170. 170.
    Ratledge C (1993) Single cell oils—have they a biotechnological future? Trends Biotechnol 11:278–284PubMedCrossRefGoogle Scholar
  171. 171.
    Ratledge C (2002) Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans 32:1047–1050Google Scholar
  172. 172.
    Ratledge C (2008) Microbial lipids in biotechnology. In: Rehm HJ, Reed G (ed) vol 7, 2nd edn. VCH, Germany, pp 133–197Google Scholar
  173. 173.
    Ratledge C, Hall MJ (1977) Oxygen demand by lipid-accumulating yeasts in continuous culture. Appl Environ Microbiol 34(2):230–231PubMedGoogle Scholar
  174. 174.
    Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51PubMedCrossRefGoogle Scholar
  175. 175.
    Reitan KI, Rainuzzo JR, Olsen Y (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J Phycol 30:972–979CrossRefGoogle Scholar
  176. 176.
    Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214CrossRefGoogle Scholar
  177. 177.
    Report of the Committee on Development of Biofuels, Planning Commission, Government of India (2003) http://planningcommission.nic.in/reports/genrep/cmtt_ bio.pdf
  178. 178.
    Richmond A, Zhang CW, Zarmi Y (2003) Efficient use of strong light for high photosynthetic productivity: interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol Eng 20:229–236PubMedCrossRefGoogle Scholar
  179. 179.
    Rittmann BE (2008) Opportunity for renewable bioenergy using microorganisms. Biotechnol Bioeng 100(2):203–212PubMedCrossRefGoogle Scholar
  180. 180.
    Rodolphi L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  181. 181.
    Roessler PG, Bleibaum JL, Thompson GA, Ohlrogge JB (1994) Characteristics of the gene that encodes acetyl-CoA carboxylase in the diatom Cyclotella cryptica. Ann N Y Acad Sci 721:250–256PubMedCrossRefGoogle Scholar
  182. 182.
    Scragg AH, Illman AM, Carden A, Shales SW (2002) Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23:67–73CrossRefGoogle Scholar
  183. 183.
    Sergeeva YE, Konova LV, Galanina LA, Gagarina AB, Evteeva NM (2006) Biologically active lipids in fungi of the Pilobolaceae family. Microbiology 75(1):15–19CrossRefGoogle Scholar
  184. 184.
    Sharp CA (1996) Emissions and lubricity evaluation of rapeseed derived biodiesel fuels. Final report for Montana Department of Environmental Quality. Southwest Research InstituteGoogle Scholar
  185. 185.
    Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998a) Life cycle inventory of biodiesel and petroleum diesel for use in an urban bus. Final report, National Renewable Energy Laboratory, NREL/SR-580-24089 UC Category 1503, May 1998Google Scholar
  186. 186.
    Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program—biodiesel from algae. National Renewable Energy Laboratory, Golden, COGoogle Scholar
  187. 187.
    Shen Y, Pei Z, Yuan W, Mao E (2009) Effect of nitrogen and extraction method on algae lipid yield. Int J Agric Biol Eng 2(1):51–57Google Scholar
  188. 188.
    Somashekar D, Venkateshwaran G, Sambaiah K, Lokesh BR (2002) Effect of culture conditions on lipid and gamma-linolenic acid production by mucoraceous fungi. Process Biochem 38:1719–1724CrossRefGoogle Scholar
  189. 189.
    Spolaore P, Cassan CJ, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96PubMedCrossRefGoogle Scholar
  190. 190.
    Sung KD, Lee JS, Shin CS, Park SC, Choi MJ (1999) CO2 fixation by Chlorella sp., KR-1 and its cultural characteristics. Bioresour Technol 68:269–273CrossRefGoogle Scholar
  191. 191.
    Suutari M, Priha P, Laakso S (1993) Temperature shifts in regulation of lipids accumulated by Lipomyces starkeyi. JAOCS 70(9):891–894CrossRefGoogle Scholar
  192. 192.
    Swaaf MED, Rijk TCD, Meer PV, Eggink G, Sijtsma L (2003) Analysis of docosahexaenoic acid biosynthesis in Crypthecodinium cohnii by 13C labelling and desaturase inhibitor experiments. J Biotechnol 103:21–29PubMedCrossRefGoogle Scholar
  193. 193.
    Takagi M, Watanabe K, Yamaberi K, Yoshida T (2000) Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Appl Microbiol Biotechnol 54:112–117PubMedCrossRefGoogle Scholar
  194. 194.
    Tennessen DJ, Bula RJ, Sharkey TD (1995) Efficiency of photosynthesis in continuous and pulsed light emitting diode irradiation. Photosynth Res 44:261–269CrossRefGoogle Scholar
  195. 195.
    Tetali SD, Mitra M, Melis A (2006) Development of the light-harvesting chlorophyll antenna in the green alga Chlamydomonas reinhardtii is regulated by the novel Tla1 gene. Planta 225:813–829CrossRefGoogle Scholar
  196. 196.
    The energy report (2008) Chapter 14: biodiesel. http://www.window.state.tx.us/specialrpt/energy/pdf/14-Biodiesel.pdf
  197. 197.
    The Worldwatch Institute (2005) Renewables 2005: global status report. http://www.worldwatch.org
  198. 198.
    Theodoridou A, Dornemann D, Kotzabasis K (2002) Light-dependent induction of strongly increased microalgal growth by methanol. Biochim Biophys Acta 1573:189–198PubMedGoogle Scholar
  199. 199.
    U.S. Foreign Agricultural Service, Department of Agriculture (FAS-USDA) (2006) Peoples Republic of China bio-fuels annual 2006. Gain Report Number CH7039, Washington, DCGoogle Scholar
  200. 200.
    Veloso V, Reis A, Gouveia L, Fernandes HL, Empis JA, Novais JM (1991) Lipid production by Phaeodactylum tricornuturn. Bioresour Technol 38:115–119CrossRefGoogle Scholar
  201. 201.
    Verma NM, Mehrotra S, Shukla A, Mishra BN (2010) Prospective of biodiesel production utilizing microalgae as the cell factories: a comprehensive discussion. Afric J Biotechnol 9(10):1402–1411Google Scholar
  202. 202.
    Vicente G, Martnez M, Aracil (2004) Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol 92:297–305PubMedCrossRefGoogle Scholar
  203. 203.
    Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186PubMedCrossRefGoogle Scholar
  204. 204.
    Weldy CS, Huesemann M (2007) Lipid production by Dunaliella salina in batch culture: effects of nitrogen limitation and light intensity. U.S. Department of Energy. J Undergrad Res 7:115–122. http://www.scied.science.doe.gov
  205. 205.
    Westendorf ML (2000) Food waste to animal feed. Iowa State University Press, Ames, p 298CrossRefGoogle Scholar
  206. 206.
    Wild R, Patil S, Popovic M, Zappi M, Dufreche S, Bajpai R (2010) Lipids from Lipomyces starkeyi. Food Technol Biotechnol 48(3) (in press)Google Scholar
  207. 207.
    Wise TA (2007) Policy space for Mexican maize: protecting agro-biodiversity by promoting rural livelihoods. Global development and environmental institute working paper No. 07-01. http://ase.tufts.edu/gdae/Pubs/wp/07-01MexicanMaize.pdf
  208. 208.
    Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135:1115–1122CrossRefGoogle Scholar
  209. 209.
    Wu ST, Yu ST, Lin LP (2005) Effect of culture conditions on docosahexaenoic acid production by Schizochytrium sp. S31. Process Biochem 40:3103–3108CrossRefGoogle Scholar
  210. 210.
    Wu S, Hu C, Jin G, Zhao X, Zhao ZK (2010) Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129PubMedCrossRefGoogle Scholar
  211. 211.
    Xian M, Kang Y, Yan J, Liu J, Bi Y, Zhen K (2002) Production of linolenic acid by Mortierella isabellina grown on octadecanol. Current Microbiol 44:141–144PubMedCrossRefGoogle Scholar
  212. 212.
    Xiong W, Li X, Xiang J, Wu Q (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biotechnol 78(1):29–36PubMedCrossRefGoogle Scholar
  213. 213.
    Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507PubMedCrossRefGoogle Scholar
  214. 214.
    Xue F, Miao J, Zhang X, Luo H, Tan T (2008) Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresour Technol 99:5923–5927PubMedCrossRefGoogle Scholar
  215. 215.
    Xue F, Gao B, Zhu Y, Zhang X, Feng W, Tan T (2010) Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresour Technol 101:6092–6095PubMedCrossRefGoogle Scholar
  216. 216.
    Yamauchi H, Mori H, Kobayashi T, Shimizu S (1983) Mass production of lipids by Lipomyces starkeyi in microcomputer-aided fed-batch culture. J Ferment Technol 61:275–280Google Scholar
  217. 217.
    Yoo C, Junc SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels of carbon dioxide. Bioresour Technol 101:71–74CrossRefGoogle Scholar
  218. 218.
    Zabeti N, Bonin P, Volkman JK, Guasco S, Rontani JF (2010) Fatty acid composition of bacterial strains associated with living cells of the haptophyte Emiliania huxleyi. Org Geochem 41:627–636CrossRefGoogle Scholar
  219. 219.
    Zhang XZ, Hu Q, Sommerfeld M, Puruhito E, Chen YS (2010) Harvesting algal biomass for biofuels using ultra filtration membranes. Bioresour Technol 101:5279Google Scholar
  220. 220.
    Zhu LY, Zong MH, Wu H (2008) Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol 99:7881–7885PubMedCrossRefGoogle Scholar
  221. 221.
    Ziino M, Lo Curto RB, Salvo F, Signorino D, Chiofalo B, Giuffrida D (1999) Lipid composition of Geotrichum candidum single cell protein grown in continuous submerged culture. Bioresour Technol 67:7–11CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Ramalingam Subramaniam
    • 1
  • Stephen Dufreche
    • 1
  • Mark Zappi
    • 1
  • Rakesh Bajpai
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations