Current approaches to exploit actinomycetes as a source of novel natural products

  • Olga Genilloud
  • Ignacio González
  • Oscar Salazar
  • Jesus Martín
  • José Rubén Tormo
  • Francisca Vicente


For decades, microbial natural products have been one of the major sources of novel drugs for pharmaceutical companies, and today all evidence suggests that novel molecules with potential therapeutic applications are still waiting to be discovered from these natural sources, especially from actinomycetes. Any appropriate exploitation of the chemical diversity of these microbial sources relies on proper understanding of their biological diversity and other related key factors that maximize the possibility of successful identification of novel molecules. Without doubt, the discovery of platensimycin has shown that microbial natural products can continue to deliver novel scaffolds if appropriate tools are put in place to reveal them in a cost-effective manner. Whereas today innovative technologies involving exploitation of uncultivated environmental diversity, together with chemical biology and in silico approaches, are seeing rapid development in natural products research, maximization of the chances of exploiting chemical diversity from microbial collections is still essential for novel drug discovery. This work provides an overview of the integrated approaches developed at the former Basic Research Center of Merck Sharp and Dohme in Spain to exploit the diversity and biosynthetic potential of actinomycetes, and includes some examples of those that were successfully applied to the discovery of novel antibiotics.


Natural products Actinomycetes Microfermentation Dereplication Drug discovery 


  1. 1.
    Alam MT, Merlo ME, Takano E, Breitling R (2010) Genome-based phylogenetic analysis of Streptomyces and its relatives. Mol Phylogenet Evol 54:763–772CrossRefPubMedGoogle Scholar
  2. 2.
    Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814PubMedGoogle Scholar
  3. 3.
    Ayers S, Zink DL, Powell JS, Brown CM, Murphy T, Grund A, Genilloud O, Salazar O, Thompson D, Singh SB (2008) Anthelmintic macrolactams from Nonomuraea turkmeniaca MA7381. J Antibiot 61:59–62CrossRefPubMedGoogle Scholar
  4. 4.
    Ayuso A, Clark D, González I, Salazar O, Anderson A, Genilloud O (2005) A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Appl Microbiol Biotechnol 67:795–806CrossRefPubMedGoogle Scholar
  5. 5.
    Ayuso-Sacido A, Genilloud O (2005) New PCR primers for the screening of NRPS and PKS-I systems in actinomycetes: detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbiol Ecol 49:10–24CrossRefGoogle Scholar
  6. 6.
    Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opin Pharmacol 8:557–563CrossRefPubMedGoogle Scholar
  7. 7.
    Banik JJ, Brady SF (2008) Cloning and characterization of new glycopeptides gene clusters found in an environmental DNA megalibrary. Proc Natl Acad Sci USA 105:17273–17277CrossRefPubMedGoogle Scholar
  8. 8.
    Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefPubMedGoogle Scholar
  9. 9.
    Berdy J (2005) Bioactive microbial metabolites. A personal view. J Antibiot 58:1–26CrossRefPubMedGoogle Scholar
  10. 10.
    Bills GF, Platas G, Fillola A, Jimenez MR, Collado J, Vicente F, Martin J, Gonzalez A, Bur-Zimmermann J, Tormo JR, Peláez F (2008) Enhancement of antibiotic and secondary metabolite detection from filamentous fungi by growth on nutritional arrays. J Appl Microbiol 104:1644–1658CrossRefPubMedGoogle Scholar
  11. 11.
    Bills GF, Martín J, Collado J, Platas G, Overy D, Tormo JR, Vicente F, Verkleij G, Crous P (2009) Measuring the distribution and diversity of antibiosis and secondary metabolites in the filamentous fungi. SIM News 59:133–147Google Scholar
  12. 12.
    Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3:619–627CrossRefPubMedGoogle Scholar
  13. 13.
    Brady SF, Simmons L, Kim JH, Schmidt EW (2009) Metagenomic approaches to natural products from free-living and symbiotic organisms. Nat Prod Rep 26:1488–1503CrossRefPubMedGoogle Scholar
  14. 14.
    Bredholt H, Fjærvik E, Johnsen G, Zotchev SB (2008) Actinomycetes from sediments in the Trondheim Fjord, Norway: diversity and biological activity. Mar Drugs 6:12–24PubMedGoogle Scholar
  15. 15.
    Bugni TS, Richards B, Bhoite L, Cimbora D, Harper MK, Ireland CM (2008) Marine natural product libraries for high-throughput screening and rapid drug discovery. J Nat Prod 71:1095–1098CrossRefPubMedGoogle Scholar
  16. 16.
    Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569CrossRefPubMedGoogle Scholar
  17. 17.
    Corre C, Challis GL (2009) New natural product biosynthetic chemistry discovered by genome mining. Nat Prod Rep 26:977–986CrossRefPubMedGoogle Scholar
  18. 18.
    Craig JW, Chang FY, Brady SF (2009) Natural products from environmental DNA hosted in Ralstonia metallidurans. ACS Chem Biol 4:23–28CrossRefPubMedGoogle Scholar
  19. 19.
    Cremen PA, Zeng L (2002) High-throughput analysis of natural product compound libraries by parallel LC–MS evaporative light scattering detection. Anal Chem 74:5492–5500CrossRefGoogle Scholar
  20. 20.
    Davis KER, Joseph SJ, Janssen PH (2005) Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol 71:826–834CrossRefPubMedGoogle Scholar
  21. 21.
    Dieting U, Trauthwein H, Zimmermann H (2005) High-throughput screening in the climatic chamber. Elements Degussa Sci News 11:14–18Google Scholar
  22. 22.
    Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109CrossRefPubMedGoogle Scholar
  23. 23.
    Duetz WA, Witholt B (2001) Effectiveness of orbital shaking for the aeration of suspended bacterial cultures insquare-deepwell microtiter plates. Biochem Eng J 7:113–115CrossRefPubMedGoogle Scholar
  24. 24.
    Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15:469–475CrossRefPubMedGoogle Scholar
  25. 25.
    Egan S, Wiener P, Kallifidas D, Wellington EMH (2001) Phylogeny of Streptomyces species and evidence for horizontal transfer of entire and partial antibiotic gene clusters. Antonie van Leeuwenhoek 79:127–133CrossRefPubMedGoogle Scholar
  26. 26.
    Fiedler H-P, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87:37–42CrossRefPubMedGoogle Scholar
  27. 27.
    Fischbach MA (2009) Antibiotics from microbes: converging to kill. Curr Opin Microbiol 12:520–527CrossRefPubMedGoogle Scholar
  28. 28.
    Gontang EA, Gaudêncio SP, Fenical W, Jensen PR (2010) Sequence-based analysis of secondary metabolite biosynthesis in marine actinobacteria. Appl Environ Microbiol 76:2487–2499CrossRefPubMedGoogle Scholar
  29. 29.
    Gonzalez I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol Ecol 54:401–415CrossRefPubMedGoogle Scholar
  30. 30.
    Guo Y, Zheng W, Rong X, Huang Y (2008) A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematic. Int J Syst Evol Microbiol 58:149–159CrossRefPubMedGoogle Scholar
  31. 31.
    Hamaki T, Suzuki M, Fudou R, Jojima Y, Kajiura T, Tabuchi A, Sen K, Shibai H (2005) Isolation of novel bacteria and actinomycetes using soil-extract agar medium. J Biosci Bioeng 99:485–492CrossRefPubMedGoogle Scholar
  32. 32.
    Harvey AL (2007) Natural products as a screening resource. Curr Opin Chem Biol 11:480–484CrossRefPubMedGoogle Scholar
  33. 33.
    Hayakawa M, Otoguro M, Takeuchi T, Yamazaki T, Iimura Y (2000) Application of a method incorporating differential centrifugation for selective isolation of motile actinomycetes in soil and plant litter. Antonie Van Leeuwenhoek 83:107–116Google Scholar
  34. 34.
    Huang H, Wu X, Yi S, Zhou Z, Zhu J, Fang Z, Yue J, Bao S (2008) Rifamycin S and its geometric isomer produced by a newly found actinomycete, Micromonospora rifamycinica. Antonie van Leeuwenhoek 95:143–148CrossRefGoogle Scholar
  35. 35.
    Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531CrossRefPubMedGoogle Scholar
  36. 36.
    Janso JE, Carter GT (2010) Phylogenetically unique andophytic Actinomycetes from tropical plants possess great biosynthetic potential. Appl Environ Microbiol 76:4377–4386CrossRefPubMedGoogle Scholar
  37. 37.
    Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol 68:2391–2396CrossRefPubMedGoogle Scholar
  38. 38.
    Jayasuriya H, Herath K, Ondeyka JG, Zhang C, Zink DL, Brower M, Gailliot FP, Greene J, Birdsall G, Venugopal J, Ushio M, Burgess B, Russotti G, Walker A, Hesse M, Seeley A, Junker B, Connors N, Salazar O, Genilloud O, Liu K, Masurekar P, Barrett JF, Singh SB (2007) Isolation and structure elucidation of thiazomycin. A potent thiazolyl peptide antibiotic from Amycolatopsis fastidiosa. J Antibiot 60:554–564CrossRefPubMedGoogle Scholar
  39. 39.
    Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73:1146–1152CrossRefPubMedGoogle Scholar
  40. 40.
    Kizuka M, Enokita R, Takahashi K, Okazaki T (1997) Distribution of the actinomycetes in the Republic of South Africa investigated using a newly developed isolation method. Actinomycetologica 11:54–58CrossRefGoogle Scholar
  41. 41.
    Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220CrossRefPubMedGoogle Scholar
  42. 42.
    Koehn FE (2008) High impact technologies for natural products screening. In: Petersen F, Amstutz R (eds) Progress in drug research 65, natural products as drugs I. Birkhauser, Basel, pp 177–210Google Scholar
  43. 43.
    Lang G, Mayhudin NA, Maya I, Mitova MI, Sun L, Sun L, van der Sar S, Blunt JW, Cole AJL, Ellis G, Laatsch H, Munro MHG (2008) Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. J Nat Prod 71:1595–1599CrossRefPubMedGoogle Scholar
  44. 44.
    Lanoot B, Vancanneyt M, Van Schoor A, Liu Z, Swings J (2005) Reclassification of Streptomyces nigrifaciens as a later synonym of Streptomyces flavovirens; Streptomyces citreofluorescens, Streptomyces chrysomallus subsp. chrysomallus and Streptomyces fluorescens as later synonyms of Streptomyces anulatus; Streptomyces chibaensis as a later synonym of Streptomyces corchorusii; Streptomyces flaviscleroticus as a later synonym of Streptomyces minutiscleroticus; and Streptomyces lipmanii, Streptomyces griseus subsp. alpha, Streptomyces griseus subsp. cretosus and Streptomyces willmorei as later synonyms of Streptomyces microflavus. Int J Syst Evol Microbiol 55:729–731CrossRefPubMedGoogle Scholar
  45. 45.
    Laskari P, Tolba S, Calvo-Bado L, Wellington L (2010) Coevolution of antibiotic production and counter-resistance in soil bacteria. Environ Microbiol 12:783–793CrossRefGoogle Scholar
  46. 46.
    Li JWH, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165CrossRefPubMedGoogle Scholar
  47. 47.
    Lin Y, Schiavo S, Orjala J, Vouros P, Kautz R (2008) Microscale LC–MS-NMR platform applied to the identification of active cyanobacterial metabolites. Anal Chem 80:8045–8054CrossRefPubMedGoogle Scholar
  48. 48.
    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A-L, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112CrossRefPubMedGoogle Scholar
  49. 49.
    Montalvo NF, Mohamed NM, Enticknap JJ, Hill RT (2005) Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87:29–36CrossRefPubMedGoogle Scholar
  50. 50.
    Morningstar A, Gaze WH, Tolba S, Wellington EM (2006) Evolving gene clusters in bacteria. In: Logan A, Lappin-Scott HM, Oyston PC (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, pp 201–222CrossRefGoogle Scholar
  51. 51.
    Nett M, Ikeda H, Moore BS (2009) Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26:1362–1384CrossRefPubMedGoogle Scholar
  52. 52.
    Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefPubMedGoogle Scholar
  53. 53.
    Oliynyk M, Samborskyy M, Lester JB, Mironenko T, Scott N, Dickens S, Haydock SF, Leadlay PF (2007) Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338. Nature Biotechnol 25:447–453CrossRefGoogle Scholar
  54. 54.
    Pathom-aree W, Stach JEM, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Diversity of actinomycetes isolated from challenger deep sediment (10, 898 m) from the Mariana Trench. Extremophiles 10:181–189CrossRefPubMedGoogle Scholar
  55. 55.
    Peláez F, Genilloud O (2003) Discovering new drugs from microbial natural products. In: Barredo JL (ed) Microorganisms for health care, foods and enzyme production. Research Signpost, Trivandrum, pp 1–22Google Scholar
  56. 56.
    Rollinger JM (2009) Accessing target information by virtual parallel screening—the impact on natural product research. Phytochem Lett 2:53–58CrossRefGoogle Scholar
  57. 57.
    Salazar O, Valverde A, Genilloud O (2006) Real-time PCR for the detection and quantification of Geodermatophilaceae from stone samples and identification of new members of the genus Blastococcus. Appl Environ Microbiol 72:346–352CrossRefPubMedGoogle Scholar
  58. 58.
    Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760CrossRefPubMedGoogle Scholar
  59. 59.
    Singh SB, Phillips JW, Wang J (2007) Highly sensitive target-based whole-cell antibacterial discovery strategy by antisense RNA silencing. Curr Opin Drug Discov Devel 10:160–166PubMedGoogle Scholar
  60. 60.
    Singh SB, Peláez F (2008) Biodiversity, chemical diversity and drug discovery. In: Petersen F, Amstutz R (eds) Progress in drug research 65, natural products as drugs I. Birkhauser, Basel, pp 142–174Google Scholar
  61. 61.
    Singh SB, Zink DL, Dorso KL, Motyl MR, Salazar O, Basilio A, Vicente MF, Byrne KM, Ha SN, Genilloud O (2009) Isolation, structure and antibacterial activities of lucensimycins D-G, discovered from Streptomyces lucensis MA7349 using an antisense strategy. J Nat Prod 72:345–352CrossRefPubMedGoogle Scholar
  62. 62.
    Singh SB, Genilloud O, Peláez F (2010) NP structural diversity II—secondary metabolite sources, evolution and selected molecular structures: terrestrial micro-organisms—bacteria. In: Mander L, Liu H-W (eds) Comprehensive natural products II. Chemistry and biology. Elsevier, UK, pp 109–140CrossRefGoogle Scholar
  63. 63.
    Smanski MJ, Peterson RM, Rajski SR, Shen B (2009) Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin. Antimicrob Agents Chemother 53:1299–1304CrossRefPubMedGoogle Scholar
  64. 64.
    Stach JEM, Bull AT (2005) Estimating and comparing the diversity of marine actinobacteria. Antonie van Leeuwenhoek 87:3–9CrossRefPubMedGoogle Scholar
  65. 65.
    Strohl WR, Woodruff HB, Monaghan RL, Hendlin D, Mochales S, Demain AL (2001) The history of natural products research at Merck & Co., Inc. SIM News 51:5–19Google Scholar
  66. 66.
    Suzuki S (2001) Establishment and use of gellan gum media for selective isolation and distribution survey of specific rare actinomycetes. Actinomycetologica 15:55–60CrossRefGoogle Scholar
  67. 67.
    Taechowisan T, Peberdy JF, Lumyong S (2003) Isolation of endophytic actinomycetes from selected plants and their antifungal activity. World J Microbiol Biotechnol 19:381–385CrossRefGoogle Scholar
  68. 68.
    Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microbiol 71:2162–2169CrossRefPubMedGoogle Scholar
  69. 69.
    Thomas CM, Nielsen KM (2005) Mechanisms of, an barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721CrossRefPubMedGoogle Scholar
  70. 70.
    Thornburg CC, Zabriskie TM, McPhail KL (2010) Deep-sea hydrothermal vents: potential hot spots for natural products discovery? J Nat Prod 73:489–499CrossRefPubMedGoogle Scholar
  71. 71.
    Tormo JR, García JB, DeAntonio M, Feliz J, Mira A, Díez MT, Hernández P, Peláez F (2003) A method for the selection of production media for actinomycete strains based on their metabolite HPLC profiles. J Ind Microbiol Biotechnol 30:582–588CrossRefGoogle Scholar
  72. 72.
    Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius The ISME J. doi: 10.1038/ismej.2010.55
  73. 73.
    Udwary DW, Zeigler L, Asolkar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 104:10376–10381CrossRefPubMedGoogle Scholar
  74. 74.
    Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40Google Scholar
  75. 75.
    Vos P, Hogers R, Bleecker M, Reijens M, Lee J, Hornes M, Friders A, Pot J, Palemann J, Kaiper M, Zabean M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414CrossRefPubMedGoogle Scholar
  76. 76.
    Wagenaar MM (2008) Pre-fractionated microbial samples—the second generation natural products library at Wyeth. Molecules 13:1406–1426CrossRefPubMedGoogle Scholar
  77. 77.
    Wang J, Soisson SM, Young K, Shoop W, Kodali S, Galgoci A, Painter R, Parthasarathy G, Tang YS, Cummings R, Ha S, Dorso K, Motyl M, Jayasuriya H, Ondeyka J, Herath K, Zhang CW, Hernandez L, Allocco J, Basilio A, Tormo JR, Genilloud O, Vicente F, Pelaez F, Colwell L, Lee SH, Michael B, Felcetto T, Gill C, Silver LL, Hermes JD, Bartizal K, Barrett J, Schmatz D, Becker JW, Cully D, Singh SB (2006) Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441:358–361CrossRefPubMedGoogle Scholar
  78. 78.
    Wang J, Kodali S, Lee SH, Galgoci A, Painter R, Dorso K, Racine F, Motyl M, Hernandez L, Tinney E, Colletti SL, Herath K, Cummings R, Salazar O, González I, Basilio A, Vicente F, Genilloud O, Peláez F, Jayasuriya H, Young K, Cully DF, Singh SB (2007) Discovery of platencin, a dual FabF and FabH inhibitor with in vivo antibiotic properties. Proc Natl Acad Sci USA 104:7612–7616CrossRefPubMedGoogle Scholar
  79. 79.
    Watve MG, Tickoo R, Jog MM, Bhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390CrossRefPubMedGoogle Scholar
  80. 80.
    Welsh J, McClelland M (1990) Finger printing of genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218CrossRefPubMedGoogle Scholar
  81. 81.
    Yarbrough GG, Taylor DP, Rowlands RT, Crawford MS, Lasure LL (1993) Screening microbial metabolites for new drugs. Theoretical and practical issues. J Antibiot 46:535–544PubMedGoogle Scholar
  82. 82.
    Young K, Jayasuriya H, Ondeyka JG, Herath K, Zhang CW, Kodali S, Galgoci A, Painter R, Brown-Driver V, Yamamoto R, Silver LL, Zheng YC, Ventura JI, Sigmund J, Ha S, Basilio A, Vicente F, Tormo JR, Pelaez F, Youngman P, Cully D, Barrett JF, Schmatz D, Singh SB, Wang J (2006) Discovery of FabH/FabF inhibitors from natural products. Antimicrob Agents Chemother 5:519–526CrossRefGoogle Scholar
  83. 83.
    Zakharova OS, Zenova GM, Zvyagintsev DG (2003) Selective isolation of actinomycetes of the genus Actinomadura from soil. Mikrobiologiia 72:126–130PubMedGoogle Scholar
  84. 84.
    Zhang CW, Occi J, Masurekar P, Barrett JF, Zink DL, Smith S, Onishi R, Ha SH, Salazar O, Genilloud O, Basilio A, Vicente F, Gill C, Hickey EJ, Dorso K, Motyl M, Singh SB (2008) Isolation, structure, and antibacterial activity of philipimycin, a thiazolyl peptide discovered from Actinoplanes philippinensis MA7347. J Am Chem Soc 130:12102–12110CrossRefPubMedGoogle Scholar
  85. 85.
    Zhang C, Ondeyka JG, Zink DL, Basilio A, Vicente MF, Salazar O, Genilloud O, Dorso KL, Motyl MR, Byrne KM, Singh SB (2009) Discovery of okilactomycin and congeners from Streptomyces scabrisporus by antisense differential sensitivity assay targeting ribosomal protein S4. J Antibiot 62:55–61CrossRefPubMedGoogle Scholar
  86. 86.
    Zimmermann HF, Rieth J (2006) A fully automated robotic system for high throughput fermentation. J Assoc Lab Automat 11:134–137CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Olga Genilloud
    • 1
  • Ignacio González
    • 1
  • Oscar Salazar
    • 2
  • Jesus Martín
    • 1
  • José Rubén Tormo
    • 1
  • Francisca Vicente
    • 1
  1. 1.Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranadaSpain
  2. 2.Genómica S.A.MadridSpain

Personalised recommendations