Journal of Industrial Microbiology & Biotechnology

, Volume 37, Issue 12, pp 1241–1248 | Cite as

Do we need new antibiotics? The search for new targets and new compounds

  • Jaroslav Spížek
  • Jitka Novotná
  • Tomáš ŘezankaEmail author
  • Arnold L. Demain
Original Paper


Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) reexamining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.


Antibiotics Infectious diseases Antibiotic resistance Biosynthesis Search for new compounds 



This work was supported by the Institutional Research Concept AV0Z50200510.


  1. 1.
    Alanis AJ (2005) Resistance to antibiotics: are we in the post-antibiotic era? Arch Med Res 35:607–705Google Scholar
  2. 2.
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environment. Nat Rev Microbiol 8:251–259CrossRefPubMedGoogle Scholar
  3. 3.
    Andersson DI, Hughes D (2010) Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8:260–271PubMedGoogle Scholar
  4. 4.
    Ansorge WJ (2009) Next-generation DNA sequencing techniques. New Biotechnol 25:195–203CrossRefGoogle Scholar
  5. 5.
    Baltz RH (2007) Antimicrobials from actinomycetes: back to the future. Microbe 2:125–131Google Scholar
  6. 6.
    Baltz RH (2008) Renaissance in antibacterial discovery from actinomycetes. Curr Opinion Pharmacol 8:557–563CrossRefGoogle Scholar
  7. 7.
    Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra CW, Chen CW, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Server K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147CrossRefPubMedGoogle Scholar
  8. 8.
    Bergmann S, Schümann J, Scherlach K, Lange C, Brakhage AA, Hertweck C (2007) Genomics driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217CrossRefPubMedGoogle Scholar
  9. 9.
    Borman S (2002) Organic lab sparks drug discovery. Chem Eng News 80(2):23–24Google Scholar
  10. 10.
    Breger J, Fuchs BB, Aperis G, Moy TI, Ausubel FM, Mylonakis E (2007) Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PloS Pathog 3:168–178CrossRefGoogle Scholar
  11. 11.
    Breinbauer R, Manger M, Scheck M, Waldmann H (2002) Natural product guided compound library development. Curr Med Chem 9:2129–2145PubMedGoogle Scholar
  12. 12.
    Bibb M, Hesketh A (2009) Analyzing the regulation of antibiotic production in streptomycetes. Methods Enzymol 458:93–116CrossRefPubMedGoogle Scholar
  13. 13.
    Brown ED, Wright DW (2005) New targets and screening approaches in antimicrobial drug discovery. Chem Rev 105:759–774CrossRefPubMedGoogle Scholar
  14. 14.
    Champney WS (2008) New antibiotic targets (methods in molecular biology). Humana, Totowa, New Jersey, USAGoogle Scholar
  15. 15.
    Daniel R (2005) The soil metagenome—a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199–204CrossRefGoogle Scholar
  16. 16.
    Davies J (2007) Microbes have the last word. A drastic re-evaluation of antimicrobial treatment is needed to overcome the threat of antibiotic resistant bacteria. EMBO Rep 8:616–621CrossRefPubMedGoogle Scholar
  17. 17.
    Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot 62:5–16CrossRefPubMedGoogle Scholar
  18. 18.
    Feher M, Schmidt JM (2003) Property distributions: differences between drug, natural products, and molecules from combinatorial chemistry. J Chem Inf Comput Sci 43:218–227PubMedGoogle Scholar
  19. 19.
    Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673CrossRefPubMedGoogle Scholar
  20. 20.
    Flicek P, Birney E (2009) Sense from sequence reads: methods for aligment and assembly. Nat Methods 6:S6–S12CrossRefPubMedGoogle Scholar
  21. 21.
    Hancock REW (2007) The end of an era. Nat Rev Drug Discov 6:489–497CrossRefGoogle Scholar
  22. 22.
    Hopwood DA (2006) Soil to genomics: the Streptomyces chromosome. Ann Rev Genet 40:1–23CrossRefPubMedGoogle Scholar
  23. 23.
    Hopwood DA (2007) How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them. Mol Microbiol 63:937–940CrossRefPubMedGoogle Scholar
  24. 24.
    Hopwood DA (2007) Therapeutic treasures from the deep. Nat Chem Biol 3:457–458CrossRefPubMedGoogle Scholar
  25. 25.
    Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Õmura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531CrossRefPubMedGoogle Scholar
  26. 26.
    Kieny MP, Excler JL, Girard M (2004) Research and development of new vaccines against infectious diseases. Am J Public Health 94:1931–1935CrossRefPubMedGoogle Scholar
  27. 27.
    Kraus CH (2008) Low hanging fruit in infectious disease drug development. Curr Opin Microbiol 11:434–438CrossRefPubMedGoogle Scholar
  28. 28.
    Kyrpides NC (2009) Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nat Biotechnol 27:627–632CrossRefPubMedGoogle Scholar
  29. 29.
    Lagesen KW, Ussery DW, Wassenaar TM (2010) Genome update: the 1000th genome–cautionary tale. Microbiology 156:603–608CrossRefPubMedGoogle Scholar
  30. 30.
    Lefevre F, Robe P, Jarrin C, Ginolhac A, Zago C, Auriol D, Vogel TM, Simonet P, Nalin R (2008) Drugs from hidden bugs: their discovery via untapped resources. Res Microbiol 159:153–161CrossRefPubMedGoogle Scholar
  31. 31.
    Lynch AS, Robertson GT (2008) Bacterial and fungal biofilm infections. Ann Rev Med 59:415–428CrossRefPubMedGoogle Scholar
  32. 32.
    Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251PubMedGoogle Scholar
  33. 33.
    Menzella HG, Ralph RR, Carney JR, Chandran SS, Reisinger SJ, Patel KD, Hopwood DA, Santi D (2005) Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes. Nat Biotechnol 23:1171–1176CrossRefPubMedGoogle Scholar
  34. 34.
    Moy TI, Ball AR, Anklesaria G, Lewis K, Ausubel FM (2006) Identification of novel antimicrobials using a live-animal infection model. Proc Natl Acad Sci U S A 103:10414–10419CrossRefPubMedGoogle Scholar
  35. 35.
    Nikaido H (2009) Multidrug resistance in bacteria. Ann Rev Biochem 78:119–146CrossRefPubMedGoogle Scholar
  36. 36.
    Ohnisi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060CrossRefGoogle Scholar
  37. 37.
    Oh T-J, Mo SJ, Yoon YJ, Sohng JK (2007) Discovery and molecular engineering of sugar-containing natural product biosynthetic pathways in actinomycetes. J Microbiol Biotechnol 17:1909–1921PubMedGoogle Scholar
  38. 38.
    Peláez F (2006) The historical delivery of antibiotics from microbial natural products—can history repeat? Biochem Pharmacol 71:981–990CrossRefPubMedGoogle Scholar
  39. 39.
    Piel J (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr Med Chem 13:39–50CrossRefPubMedGoogle Scholar
  40. 40.
    Reeves GA, Talavera D, Thornton JM (2009) Genome and proteome annotation: organization, interpretation and integration. J R Soc Interface 6:129–147CrossRefPubMedGoogle Scholar
  41. 41.
    Report from the American Academy of Microbiology, 2009Google Scholar
  42. 42.
    Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW, Hopwood DA, van Wezel GP (2008) Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep 9:670–675CrossRefPubMedGoogle Scholar
  43. 43.
    Sakharkar KR, Sakharkar MK, Chow VTK (2008) Biocomputational strategies for microbial drug target identification. In: Champney WS (ed) New antibiotic targets. Humana, Totowa, New Jersey, USA, pp 1–9CrossRefGoogle Scholar
  44. 44.
    Spížek J, Tichý P (1995) Some aspects of overproduction of secondary metabolites. Folia Microbiol 40:43–50CrossRefGoogle Scholar
  45. 45.
    Tahlan K, Ahn SA, Sing A, Bodnaruk TD, Willems AR, Davidson AR, Nodwell JR (2007) Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 63:951–961CrossRefPubMedGoogle Scholar
  46. 46.
    Udwary DW, Zeigler L, Asokar RN, Singan V, Lapidus A, Fenical W, Jensen PR, Moore BS (2007) Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinospora tropica. Proc Natl Acad Sci U S A 104:10376–10381CrossRefPubMedGoogle Scholar
  47. 47.
    Vaněk Z, Hošťálek Z, Spížek J (1990) Overproduction of microbial products—facts and ideas. Biotechnol Adv 8:1–27CrossRefPubMedGoogle Scholar
  48. 48.
    Walsh CF, Wright G (2005) Introduction: antibiotic resistance. Chem Rev 105:391–393CrossRefPubMedGoogle Scholar
  49. 49.
    Walsh CT, Fischbach MA (2009) Squashing superbugs—the race for new antibiotics. Sci Amer Mag 301(1):44–51CrossRefGoogle Scholar
  50. 50.
    Watve MG, Tickoo R, Jog MM, Rhole BD (2001) How many antibiotics are produced by the genus Streptomyces? Arch Microbiol 176:386–390CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Jaroslav Spížek
    • 1
  • Jitka Novotná
    • 1
    • 3
  • Tomáš Řezanka
    • 1
    Email author
  • Arnold L. Demain
    • 2
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPrague 4Czech Republic
  2. 2.Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.)Drew UniversityMadisonUSA
  3. 3.Crop Research InstitutePrague 6Czech Republic

Personalised recommendations