Journal of Industrial Microbiology & Biotechnology

, Volume 38, Issue 1, pp 199–207

Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast

  • Bruno Guedes Fonseca
  • Rondinele de Oliveira Moutta
  • Flavio de Oliveira Ferraz
  • Emílio Rosa Vieira
  • Andrei Santini Nogueira
  • Bruno Fernandes Baratella
  • Luiz Carlos Rodrigues
  • Zhang Hou-Rui
  • Sílvio Silvério da Silva
Original Paper

Abstract

This work had as its main objective to contribute to the development of a biological detoxification of hemicellulose hydrolysates obtained from different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. Tests with hemicellulosic hydrolysate of sugarcane bagasse in different concentrations were carried out to evaluate the influence of the hydrolysate concentration on the inhibitory compounds removal from the sugarcane bagasse hydrolysate, without reduction of sugar concentration. The highest reduction values of inhibitors concentration and less sugar losses were observed when the fivefold concentrated hydrolysate was treated by the evaluated yeast. In these experiments it was found that the high sugar concentrations favored lower sugar consumption by the yeast. The highest concentration reduction of syringaldehyde (66.67%), ferulic acid (73.33%), furfural (62%), and 5-HMF (85%) was observed when the concentrated hydrolysate was detoxified by using this yeast strain after 24 h of experimentation. The results obtained in this work showed the potential of the yeast Issatchenkia occidentalis CCTCC M 206097 as detoxification agent of hemicellulosic hydrolysate of different biomass plants.

Keywords

Hydrolysate Biodetoxification Issatchenkia occidentalis Furans Phenolic compounds 

References

  1. 1.
    Lynd RL, Van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Cur Opin Biotechnol 16:577–583CrossRefGoogle Scholar
  2. 2.
    Zhao X, Wang L, Liu D (2008) Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work. J Chem Technol Biotechnol 83:950–956CrossRefGoogle Scholar
  3. 3.
    Dawson L, Boopathy R (2008) Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification. Bioresource 3(2):452–460Google Scholar
  4. 4.
    Pan X, Xie D, Gilkes N, Gregg DJ, Saddler JN (2005) Strategies to enhance the enzymatic hydrolysis of pretreated softwood with content high residual lignin. Appl Biochem Biotechnol 121–124:1069–1080CrossRefPubMedGoogle Scholar
  5. 5.
    Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Resour 48:3713–3729CrossRefGoogle Scholar
  6. 6.
    Herrera A, Téllez-Luis SJ, Ramírez JA, Vázquez M (2003) Production of xylose from sorghum straw using hydrochloric acid. J Cereal Sci 37:267–274CrossRefGoogle Scholar
  7. 7.
    López MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechonol 64:125–131CrossRefGoogle Scholar
  8. 8.
    Saha BC, Iten LB, Cotta MA, Wu VY (2005) Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem 40:3693–3700CrossRefGoogle Scholar
  9. 9.
    Morita TA, Silva SS (2000) Inhibition of microbial xylitol production by acetic acid and its relation with fermentative parameters. Appl Biochem Biotechnol 84–86:801–808CrossRefPubMedGoogle Scholar
  10. 10.
    Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae. Enzyme Microb Technol 19:220–225CrossRefGoogle Scholar
  11. 11.
    Domínguez JM (2003) Efecto de los productos de degradación originados en la explosión por vapor de biomassa de chopo sobre Kluyveromyces marxianus. Tesis (Doutorado). Universidad Complutense. Madrid. ISBN: 84-669-1709-8Google Scholar
  12. 12.
    Carvalho GBM, Mussatto SI, Cândido EJ, Silva JBA (2006) Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol 81:152–157CrossRefGoogle Scholar
  13. 13.
    Alves LA (2001) Efeito do hidrolisado hemicelulósico de bagaço de cana-de-açúcar submetido a diferentes tratamentos sobre a atividade da xylose redutase de Candida guilliermondii. 193f. Tese (Doutorado)—Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), São PauloGoogle Scholar
  14. 14.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: Inhibitors and detoxification. Bioresour Technol 74:17–24CrossRefGoogle Scholar
  15. 15.
    Okuda N, Sonuera M, Ninomiya K, Katakura Y, Shioya S (2008) Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng 106(2):128–133CrossRefPubMedGoogle Scholar
  16. 16.
    Hou-Rui Z, Xiang-Xiang Q, Silva SS, Sarrouh BF, Ai-Hua C, Yu-Heng Z, Ke J, Qiu X (2008) Novel isolates for biological detoxification of lignocellulosic hydrolysate. Appl Biochem Biotechnol 152(2):199–212CrossRefPubMedGoogle Scholar
  17. 17.
    Taherzadeh MJ, Niklasson C, Liden G (2000) On-line control of fed-batch fermentation of dilute-acid hydrolysates. Biotechnol Bioeng 69:330–338CrossRefPubMedGoogle Scholar
  18. 18.
    Sanches B, Bautista S (1998) Effects of furfural and 5-hidroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enzyme Microb Technol 10:315–318CrossRefGoogle Scholar
  19. 19.
    Pivetta LR, Arruda PV, Felipe MGA (2008) Comparação de metodologias de destoxificação do hidrolisado de bagaço de cana para a produção de xilitol por via fermentativa. In: XII Encontro Latino Americano de Iniciação CientíficaGoogle Scholar
  20. 20.
    Van Zyl C, Prior BA, Du Preez JC (1991) Acetic acid inhibition of d-xylose fermentation by Pichia stipitis. Enzyme Microb Technol 13:82–86CrossRefGoogle Scholar
  21. 21.
    Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27CrossRefPubMedGoogle Scholar
  22. 22.
    Mussato SI, Santos JC, Roberto IC (2004) Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xilitol production. J Chem Technol Biotechnol 79:590–596CrossRefGoogle Scholar
  23. 23.
    Carvalho W, Canilha L, Mussatto SI, Dragone G, Morales MLV, Solenzal AI (2004) Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. J Chem Technol Biotechnol 79:863–868CrossRefGoogle Scholar
  24. 24.
    Larsson S, Reinmann S, Nilvebrant N-O, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocelluloses hydrolysates of spruce. Appl Biochem Biotechnol 77–79:91–103CrossRefGoogle Scholar
  25. 25.
    Frazer FR, McCaskey TA (1989) Wood hydrolysate treatments for improved fermentation of sugars to 2, 3-butanediol. Biomass 18:31–42CrossRefGoogle Scholar
  26. 26.
    Kim D-H, Hong Y-A, Park H-D (2008) Co-fermentation of grape must by Issatchenkia orientalis and Saccharomyces cerevisiae reduces the malic acid content in wine. Biotechnol Lett 30(9):1633–1638CrossRefPubMedGoogle Scholar
  27. 27.
    Duarte LC, Carvalheiro F, Neves I, Gírio FM (2005) Effects of aliphatic acids, furfural, and phenolic compounds on Debaryomyces hansenii CCMI 941. Appl Biochem Biotechonol 121–124:413–425CrossRefGoogle Scholar
  28. 28.
    Lee WG, Lee JS, Shin CS, Park SC, Chang HN, Chang YK (1999) Ethanol production using concentrated oak wood hydrolysates and methods to detoxify. Appl Biochem Biotechnol 77–79:547–559CrossRefPubMedGoogle Scholar
  29. 29.
    Cortez DV (2005) Influência dos produtos de degradação de lignina na bioconversão de xilose em xilitol por Candida guilliermondii. 100f. Dissertação de Mestrado Faenquil, LorenaGoogle Scholar
  30. 30.
    Nichols NN, Sharma LN, Mowery RA, Chambliss CK, Peter van Walsum G, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb Technol 42:624–630CrossRefGoogle Scholar
  31. 31.
    Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177CrossRefPubMedGoogle Scholar
  32. 32.
    Horváth IS, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol 69(7):4076–4086CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Bruno Guedes Fonseca
    • 1
  • Rondinele de Oliveira Moutta
    • 1
  • Flavio de Oliveira Ferraz
    • 1
  • Emílio Rosa Vieira
    • 1
  • Andrei Santini Nogueira
    • 1
  • Bruno Fernandes Baratella
    • 1
  • Luiz Carlos Rodrigues
    • 2
  • Zhang Hou-Rui
    • 3
  • Sílvio Silvério da Silva
    • 1
  1. 1.Deptamento de Biotecnologia LorenaUniversidade de São Paulo/Escola de Engenharia de LorenaLorenaBrazil
  2. 2.Universidade Federal Fluminense-UFFVolta RedondaBrazil
  3. 3.Phytochemical Department, Guangxi Institute of BotanyThe Chinese Academy of SciencesGuangxiPeople’s Republic of China

Personalised recommendations