Advertisement

A stress response related to the carbon source and the absence of KlHAP2 in Kluyveromyces lactis

  • Mónica Lamas-Maceiras
  • Ana M. Rodríguez-Torres
  • María A. Freire-PicosEmail author
Original Paper

Abstract

The Kluyveromyces lactis HIS4 gene (KlHIS4) is transcriptionally regulated by the carbon source. The promoter region encompassing positions −238 to −139 is responsible for this regulation according to lacZ reporter assays. Electrophoretic Mobility Shift Assay (EMSA) experiments on KlHIS4 promoter (positions −218 to −213, Fragment 6, F6) show a specific gel-shift band, CS1, whose intensity is carbon-source dependent in K. lactis hap2 (klhap2) knock-out strains. The klhap3 mutation is not able to cause this effect by itself, but the combination of klhap2 and klhap3 mutations has an enhanced effect on CS1 band formation. Introducing a heat shock element (HSE) at the sequence in the F6 fragment (mutated F6, F6*) increases the binding activity in the klhap2 mutant. KlHIS4 mRNA levels in the klhap2 or the double Klhap2/3p mutant do not correlate with the increase in CS1 binding activity, indicating that the factor causing CS1 is acting and only detectable in vitro. EMSA experiments with K. lactis wild-type cells under temperature stress conditions show a band enhancement (Ts1), similar in size to CS1. Cross-competition experiments between F6 and F6* show that F6* competes more efficiently than F6 for both CS1 and Ts1 formation, indicating the involvement of the HSE in the formation of the specific gel-shift bands. Moreover, the similar gel-shift patterns suggest that both bands are caused by the same heat shock-like factor under different stress conditions. Therefore, the enhancement of the CS1 band signal in the klhap2 (and klhap2/3) mutants is due to the increase in heat shock-like factors in the protein extracts from these mutant cells grown in a non-fermentable carbon source. This Klhap2-dependent stress effect was not previously described in K. lactis.

Keywords

Yeast Hap2/3/4-complex Transcription Kluyveromyces Carbon-source 

Abbreviation

EMSA

Electrophoresis mobility shift assay

Notes

Acknowledgments

This research was supported by grants from XUGA PGIDT99PXI10301B and PGIDIT06PXIB103086PR.

References

  1. 1.
    Becker DM, Fikes JD, Guarente L (1991) A cDNA encoding a human CCAAT binding protein cloned by functional complementation in yeast. Proc Natl Acad Sci USA 88:1968–1972CrossRefPubMedGoogle Scholar
  2. 2.
    Brons JF, De Jong M, Valens M, Grivell LA, Bolotin-Fukuhara M, Blom J (2002) Dissection of the promoter of the HAP4 gene in S. cerevisiae unveils a complex regulatory framework of transcriptional regulation. Yeast 19:923–932CrossRefPubMedGoogle Scholar
  3. 3.
    Buschlen S, Amillet J-M, Guiard B, Fournier A, Marcireau C, Bolotin-Fukuhara M (2003) The S. cerevisiae HAP complex. A key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comp Funct Genom 4:37–46CrossRefGoogle Scholar
  4. 4.
    Chodosh LA, Olesen J, Hahn S, Baldwin AS, Guarente L, Sharp PA (1988) A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell 53:25–35CrossRefPubMedGoogle Scholar
  5. 5.
    Dang VD, Bohn C, Bolotin-Fukuhara M, Daignan Fornier B (1996) The CCAAT box binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178:1842–1849PubMedGoogle Scholar
  6. 6.
    Forsburg SL, Guarente L (1989) Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3:1166–1178CrossRefPubMedGoogle Scholar
  7. 7.
    Freire-Picos MA, Hampsey M, Cerdán ME (1998) The HIS4 gene from Kluyveromyces lactis. Yeast 14:687–691CrossRefPubMedGoogle Scholar
  8. 8.
    Guarente L, Mason T (1983) Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32:1279–1286CrossRefPubMedGoogle Scholar
  9. 9.
    Guarente L (1983) Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol 101:181–191CrossRefPubMedGoogle Scholar
  10. 10.
    Hahn S, Pinkham J, Wei R, Miller R, Guarente L (1998) The HAP3 regulatory locus of Saccharomyces cerevisiae encodes divergent overlapping transcripts. Mol Cell Biol 8:655–663Google Scholar
  11. 11.
    Lamas-Maceiras M, Cerdán ME, Freire-Picos MA (1999) Kluyveromyces lactis HIS4 transcriptional regulation: similarities and differences to Saccharomyces cerevisiae HIS4 gene. FEBS Lett 458:72–76CrossRefPubMedGoogle Scholar
  12. 12.
    McNabb DS, Pinto I (2005) Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae. Eukaryot Cell 4:1829–1839CrossRefPubMedGoogle Scholar
  13. 13.
    Mulder W, Scholten IH, De Boer RW, Grivell LA (1994) Sequence of the HAP3 transcription factor of Kluyveromyces lactis predicts the presence of a novel 4-cysteine zinc-finger motif. Mol Gen Genet 245:96–106CrossRefPubMedGoogle Scholar
  14. 14.
    Nguyen C, Bolotin-Fukuhara M, Wésolowski-Louvel M, Fukuhara H (1995) The respiratory system of Kluyveromyces lactis escapes from HAP2 control. Gene 152:113–115CrossRefPubMedGoogle Scholar
  15. 15.
    Olesen JT, Guarente L (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition: model for the HAP2/3/4 complex. Genes Dev 4:1714–1729CrossRefPubMedGoogle Scholar
  16. 16.
    Pinkham JL, Olesen JT, Guarente L (1987) Sequence and nuclear localization of the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol 7:578–585PubMedGoogle Scholar
  17. 17.
    Ramil E, Freire-Picos MA, Cerdán ME (1998) Characterization of promoter regions involved in high expression of KlCYC1. Eur J Biochem 256:67–74CrossRefPubMedGoogle Scholar
  18. 18.
    Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17CrossRefPubMedGoogle Scholar
  19. 19.
    Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–21CrossRefPubMedGoogle Scholar
  20. 20.
    Torres FAG, Bonner JJ (1995) Genetic identification of the site of DNA contact in the yeast heat shock transcription factor. Mol Cell Biol 15:5063–5070PubMedGoogle Scholar
  21. 21.
    Tüncher A, Sprote P, Gehrke A, Brakhage AA (2005) The CCAAT-binding complex of eukaryotes: evolution of a second NLS in the HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at the molecular level between yeast, A. nidulans and human. J Mol Biol 352:517–533CrossRefPubMedGoogle Scholar
  22. 22.
    Ucelleti D, Farina F, Pinton P, Goffrini P, Mancini P, Talora C, Rizzuto R, Palleschi C (2005) The Golgi Ca 2+-ATPase KlPmr1p function is required for oxidative stress response by controlling the expression of the heat shock element HSP60 in Kluyveromyces lactis. Mol Biol Cell 16:4636–4647CrossRefGoogle Scholar
  23. 23.
    Xing Y, Zhang S, Olesen JT, Rich A, Guarente L (1994) Subunit interaction in the CCAAT-binding heteromeric complex is mediated by a very short α-helixin HAP2. Proc Natl Acad Sci USA 91:3009–3013CrossRefPubMedGoogle Scholar
  24. 24.
    Zitomer RS, Hall BD (1976) Yeast cytochrome c messenger RNA. In vitro translation and specific immunoprecipitation of the CYC1 gene product. J Biol Chem 251:6320–6326PubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Mónica Lamas-Maceiras
    • 1
  • Ana M. Rodríguez-Torres
    • 1
  • María A. Freire-Picos
    • 1
    Email author
  1. 1.Departamento de Biología Celular y Molecular, Area de BioquímicaUniversidad de A Coruña, Campus da ZapateiraA CoruñaSpain

Personalised recommendations