A low-cost procedure for production of fresh autochthonous wine yeast

  • Matilde Maqueda
  • Francisco Pérez-Nevado
  • José A. Regodón
  • Emiliano Zamora
  • María L. Álvarez
  • José E. Rebollo
  • Manuel Ramírez
Original Paper

Abstract

A low-cost procedure was designed for easy and rapid response-on-demand production of fresh wine yeast for local wine-making. The pilot plant produced fresh yeast culture concentrate with good microbial quality and excellent oenological properties from four selected wine yeasts. The best production yields were obtained using 2% sugar beet molasses and a working culture volume of less than 60% of the fermenter capacity. The yeast yield using 2% sugar grape juice was low and had poor cell viability after freeze storage, although the resulting yeast would be directly available for use in the winery. The performance of these yeasts in commercial wineries was excellent; they dominated must fermentation and improved its kinetics, as well as improving the physicochemical parameters and the organoleptic quality of red and white wines.

Keywords

Wine yeast Low-cost production Local wine-making Autochthonous yeast Fermentation parameters 

Abbreviations

OD 600

Optical density at 600 nm

T15

Time needed to ferment 15% of the total sugars present in the must

T100

Time needed to ferment 100% of the total sugars

cyh

Cycloheximide

smr

Sulfometuron

rhod

Rhodamine 6G

CFU

Colony-forming units

References

  1. 1.
    Ambrona J, Maqueda M, Zamora E, Ramírez M (2005) Sulfometuron resistance as genetic marker for yeast populations in wine fermentations. J Agric Food Chem 53:7438–7443CrossRefPubMedGoogle Scholar
  2. 2.
    Ambrona J, Vinagre A, Maqueda M, Álvarez ML, Ramírez M (2006) Rhodamine-pink as genetic marker for yeast populations in wine fermentations. J Agric Food Chem 54:2977–2984CrossRefPubMedGoogle Scholar
  3. 3.
    Baleiras Couto M, Eijsma B, Hofstra H, Veld JH, Vossen JM (1996) Evaluation of molecular typing techniques to assign genetic diversity among Saccharomyces cerevisiae strains. Appl Environ Microbiol 62:41–46PubMedGoogle Scholar
  4. 4.
    Barrette J, Champagne CP, Goulet J (1999) Development of bacterial contamination during production of yeast extracts. Appl Environ Microbiol 65:3261–3263PubMedGoogle Scholar
  5. 5.
    Benítez CT, Codon AC, Gasent-Ramirez JM (1994) Recent development in yeast strains for baking. In: Alberghina L (ed) Progress in biotechnology. Elsevier, Amsterdam, pp 613–622Google Scholar
  6. 6.
    Beudeker RF, Van Dam HW, Van der Plaat JB, Vellega K (1990) Developments in bakers’ yeast production. In: Verachtert H, De Mot R (eds) Yeast biotechnology and biocatalysis. Marcel Dekker Inc, New York, pp 103–146Google Scholar
  7. 7.
    Burrows S (1970) Baker’s yeast. In: Rose AH, Harrison JS (eds) The yeasts: yeast technology, vol 3. Academic Press, London, pp 349–420Google Scholar
  8. 8.
    Chen SL, Chiger M (1985) Production of bakers’ yeast. In: Moo-Young M (ed) Comprehensive biotechnology, vol 3. Pergamon Press, Oxford, pp 429–462Google Scholar
  9. 9.
    Cocolin L, Manzano M, Rebecca S, Comi G (2002) Monitoring of yeast population changes during a continuous wine fermentation by molecular methods. Am J Enol Vitic 53:24–27Google Scholar
  10. 10.
    De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156PubMedGoogle Scholar
  11. 11.
    Degre R (1993) Selection and commercial cultivation of wine yeast and bacteria. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Chur, pp 421–447Google Scholar
  12. 12.
    EC Nº 761 (1999) Amending Regulation EEC Nº 2676/90 determining community methods for the analysis of wines. Off J Eur Community L99:5–9Google Scholar
  13. 13.
    EEC Nº 2676 (1990) Métodos de análisis comunitarios aplicables al sector del vino. Official Report of the European Community, p 191Google Scholar
  14. 14.
    Enfors SO, Hedenberg J, Olsson K (1990) Simulation of the dynamics in the bakers’ yeast process. Bioprocess Eng 5:191–198CrossRefGoogle Scholar
  15. 15.
    Ferrari MD, Bianco R, Froche C, Loperena ML (2001) Baker’s yeast production from molasses/cheese whey mixtures. Biotechnol Lett 23:1–4CrossRefGoogle Scholar
  16. 16.
    Fleet GH, Heard GM (1993) Yeast growth during fermentation. In: Fleet GH (ed) Wine microbiology and biotechnology. Harwood Academic Publishers, Bern, pp 27–54Google Scholar
  17. 17.
    Giudici P, Zambonelli C (1992) Criteri di selezione dei lieviti per enologia. Vignevini 9:29–34Google Scholar
  18. 18.
    Howell KS, Bartowsky EJ, Fleet GH, Henschke PA (2004) Microsatellite PCR profiling of Saccharomyces cerevisiae strains during wine fermentation. Lett Appl Microbiol 38:315–320CrossRefPubMedGoogle Scholar
  19. 19.
    Irvin R (1954) Commercial yeast manufacture. In: Underkofler LA, Hickey RJ (eds) Industrial fermentations. Chemical Publishing Company, New York, pp 273–306Google Scholar
  20. 20.
    Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  21. 21.
    Kristiansen B (1994) Integrated design of fermentation plant. The production of bakers’ yeast. VCH Verlagsgesellschaft mbH, WeinheimGoogle Scholar
  22. 22.
    Lee J, Lee SY, Park S, Middelberg APJ (1999) Control of fed-batch fermentations. Biotechnol Adv 17:29–48CrossRefPubMedGoogle Scholar
  23. 23.
    Lo Curto RB, Tripodo MM (2001) Yeast production from virgin grape marc. Bioresour Technol 78:5–9CrossRefPubMedGoogle Scholar
  24. 24.
    López V, Querol A, Ramón D, Fernández-Espinar MT (2001) A simplified procedure to analyse mitochondrial DNA from industrial yeasts. Int J Food Microbiol 68:75–81CrossRefPubMedGoogle Scholar
  25. 25.
    Marinangeli P, Angelozzi D, Ciani M, Clementi F, Mannazzu I (2003) Minisatellites in Saccharomyces cerevisiae genes encoding cell wall proteins: a new way towards wine strain characterization. FEMS Yeast Res 4:427–435CrossRefGoogle Scholar
  26. 26.
    Melero R (1992) Fermentación controlada y seleccion de levaduras vinicas. Rev Esp Cienc Tecnol Aliment 32:371–379Google Scholar
  27. 27.
    Morrison RL (1962) The determination of acetaldehyde in high-proof fortifying spirits, beverage brandy, and wine. Am J Enol Vitic 13:159–168Google Scholar
  28. 28.
    Nadal D, Colomer B, Piña B (1996) Molecular polymorphism distribution in phenotypically distinct populations of wine yeast strains. Appl Environ Microbiol 62:1944–1950PubMedGoogle Scholar
  29. 29.
    Naumova ES, Bulat SA, Mironenko NV, Naumov GI (2001) Differentiation of six sibling species in the Saccharomyces sensu stricto complex by multilocus enzyme electrophoresis and UP-PCR analysis. Antonie van Leeuwenhoek J Microbiol 83:155–166CrossRefGoogle Scholar
  30. 30.
    Oura E, Suomalainen H (1983) Qualitative requirements and utilization of nutrients: yeasts. CRC Press, ClevelandGoogle Scholar
  31. 31.
    Pérez F, Regodón JA, Valdés ME, De Miguel C, Ramírez M (2000) Cycloheximide resistance as marker for monitoring yeasts in wine fermentations. Food Microbiol 17:119–128CrossRefGoogle Scholar
  32. 32.
    Petrik M, Käppeli O, Fiechter A (1983) An expanded concept for glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. J Gen Microbiol 129:43–49Google Scholar
  33. 33.
    Plesset J, Ludwig J, Cox B, McLaughlin C (1987) Effect of cell cycle position on thermotolerance in Saccharomyces cerevisiae. J Bacteriol 169:779–784PubMedGoogle Scholar
  34. 34.
    Querol A, Barrio E, Huerta T, Ramón D (1992) Dry yeast strain for use in fermentation of Alicante wine: selection and DNA patterns. J Food Sci 57:183–185CrossRefGoogle Scholar
  35. 35.
    Querol A, Barrio E, Huerta T, Ramón D (1992) Molecular monitoring of wine fermentations conducted by active dry yeast strains. Appl Environ Microbiol 58:2948–2953PubMedGoogle Scholar
  36. 36.
    Quesada MP, Cenis JL (1995) Use of random amplified polymorphic DNA (RAPD-PCR) in the characterization of wine yeasts. Am J Enol Vitic 46:204–208Google Scholar
  37. 37.
    Ramírez M, Pérez F, Regodón JA (1998) A simple and reliable method for hybridization of homothallic wine strains of Saccharomyces cerevisiae. Appl Environ Microbiol 64:5039–5041PubMedGoogle Scholar
  38. 38.
    Ramírez M, Regodón JA, Pérez F, Rebollo JE (1999) Wine yeast fermentation vigor may be improved by elimination of recessive growth-retarding alleles. Biotechnol Bioeng 65:212–218CrossRefPubMedGoogle Scholar
  39. 39.
    Redón M, Guillamón JM, Mas A, Rozè N (2008) Effect of active dry wine yeast storage upon viability and lipid composition. World J Microbiol Biotechnol 24:2555–2563CrossRefGoogle Scholar
  40. 40.
    Reed G, Nagodawithana TW (1988) Technology of yeast usage in winemaking. Am J Enol Vitic 39:83–90Google Scholar
  41. 41.
    Reed G, Nagodawithana TW (1991) Baker’s yeast production. In: Reed G, Nagodawithana TW (eds) Yeast Technology. Van Nostrand Reinhold, New York, pp 261–369Google Scholar
  42. 42.
    Reed G, Nagodawithana TW (1991) Yeast technology. Van Nostrand Reinhold, New YorkGoogle Scholar
  43. 43.
    Regodón JA, Pérez F, Valdés ME, De Miguel C, Ramírez M (1997) A simple and effective procedure for selection of wine yeast strains. Food Microbiol 14:247–254CrossRefGoogle Scholar
  44. 44.
    Ribereau-Gayon J, Peynaud E, Sudraud P, Ribereau-Gayon P (1982) Sciences et techniques du vin. Analysis et controle des vins, DundoGoogle Scholar
  45. 45.
    Ribéreau-Gayon P (1985) New developments in wine microbiology. Am J Enol Vitic 36:1–10Google Scholar
  46. 46.
    Schenberg-Frascino A, Moustacchi E (1972) Lethal and mutagenic effects of elevated temperature on haploid yeast. Mol Gen Genet 115:243–257CrossRefPubMedGoogle Scholar
  47. 47.
    Schuller D, Valero E, Dequin S, Casal M (2004) Survey of molecular methods for the typing of wine yeast strains. FEMS Microbiol Lett 231:19–26CrossRefPubMedGoogle Scholar
  48. 48.
    Sherman F (1991) Getting started with yeast. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology, vol 194. Academic Press, New York, pp 3–21CrossRefGoogle Scholar
  49. 49.
    Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115PubMedGoogle Scholar
  50. 50.
    Ward OP (1989) Fermentation biotechnology. Principles, processes and products. Wiley, New YorkGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • Matilde Maqueda
    • 1
  • Francisco Pérez-Nevado
    • 2
  • José A. Regodón
    • 1
  • Emiliano Zamora
    • 3
  • María L. Álvarez
    • 3
  • José E. Rebollo
    • 4
  • Manuel Ramírez
    • 1
  1. 1.Departamento de Microbiología, Facultad de Ciencias (Antiguo Rectorado)Universidad de ExtremaduraBadajozSpain
  2. 2.Departamento de Producción Animal y Ciencia de los Alimentos, Escuela de Ingenierías AgrariasUniversidad de ExtremaduraBadajozSpain
  3. 3.Estación EnológicaJunta de ExtremaduraAlmendralejo, BadajozSpain
  4. 4.Departamento de Bioquímica y Biología Molecular y Genética, Facultad de CienciasUniversidad de ExtremaduraBadajozSpain

Personalised recommendations