Journal of Industrial Microbiology & Biotechnology

, Volume 37, Issue 11, pp 1211–1220 | Cite as

Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes

  • E. Tomás-Pejó
  • M. Ballesteros
  • J. M. Oliva
  • L. Olsson
Original Paper


An efficient fermenting microorganism for bioethanol production from lignocellulose is highly tolerant to the inhibitors released during pretreatment and is able to ferment efficiently both glucose and xylose. In this study, directed evolution was employed to improve the xylose fermenting Saccharomyces cerevisiae F12 strain for bioethanol production at high substrate loading. Adapted and parental strains were compared with respect to xylose consumption and ethanol production. Adaptation led to an evolved strain more tolerant to the toxic compounds present in the medium. When using concentrated prehydrolysate from steam-pretreated wheat straw with high inhibitor concentration, an improvement of 65 and 20% in xylose consumption and final ethanol concentration, respectively, were achieved using the adapted strain. To address the need of high substrate loadings, fed-batch SSF experiments were performed and an ethanol concentration as high as 27.4 g/l (61% of the theoretical) was obtained with 11.25% (w/w) of water insoluble solids (WIS).


Bioethanol Xylose Evolutionary engineering Fed-batch S. cerevisiae 


  1. 1.
    Aristidou A, Penttila M (2000) Metabolic engineering application to renewable resource utilization. Curr Opin Biotechnol 11:187–198CrossRefPubMedGoogle Scholar
  2. 2.
    Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556CrossRefPubMedGoogle Scholar
  3. 3.
    Mosier N, Wyman CE, Dale BD, Elander RT, Lee YY, Holtzapple M, Ladisch CM (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686CrossRefPubMedGoogle Scholar
  4. 4.
    Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Biorefin 1:119–134CrossRefGoogle Scholar
  5. 5.
    Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966CrossRefPubMedGoogle Scholar
  6. 6.
    Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331CrossRefGoogle Scholar
  7. 7.
    Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates II: inhibitors and mechanism of inhibition. Bioresour Technol 74:25–33CrossRefGoogle Scholar
  8. 8.
    Olofsson K, Rudolf A, Liden G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120CrossRefPubMedGoogle Scholar
  9. 9.
    Panagiotou G, Olsson L (2007) Effect of compounds released during pretreatment of wheat straw on microbial growth and enzymatic hydrolysis rate. Biotechnol Bioeng 96:250–258CrossRefPubMedGoogle Scholar
  10. 10.
    Oliva JM, Saez F, Ballesteros I, González A, Negro MJ, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105(1–3):141–154CrossRefPubMedGoogle Scholar
  11. 11.
    Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Biochem Biotechnol 66:10–26Google Scholar
  12. 12.
    Keating JD, Panganiban C, Mansfield SD (2006) Tolerance and adaptation of ethanologenic yeast to lignocellulosic inhibitory compounds. Biotechnol Bioeng 93:1196–1206CrossRefPubMedGoogle Scholar
  13. 13.
    Graves T, Neelakan V, Narendranath KD, Power R (2006) Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol 33:469–474CrossRefPubMedGoogle Scholar
  14. 14.
    Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crop Prod 28:237–259CrossRefGoogle Scholar
  15. 15.
    Sun RC, Sun XF, Wang SQ, Zhu W, Wang XY (2002) Ester and ether linkages between hydroxycinnamic acids and lignins from wheat, rice, rye, and barley straws, maize stems, and fast-growing poplar wood. Ind Crops Prod 15:179–188CrossRefGoogle Scholar
  16. 16.
    Almeida JRM, Modig T, Petersson A, Hahn-Hägerdal B, Liden G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349CrossRefGoogle Scholar
  17. 17.
    Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Biochem Biotechnol 74:937–953Google Scholar
  18. 18.
    Eliasson A, Christensson C, Wahlbom F, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2 and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386CrossRefPubMedGoogle Scholar
  19. 19.
    Ho NWY, Zhengdao C, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859PubMedGoogle Scholar
  20. 20.
    Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S (2009) Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 100:2392–2398CrossRefPubMedGoogle Scholar
  21. 21.
    Sonderegger M, Jeppsson H, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hahn-Hägerdal B, Sauer U (2004) Fermentation performance of engineered and evolved xylose-Fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87:90–98CrossRefPubMedGoogle Scholar
  22. 22.
    Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78:172–178CrossRefPubMedGoogle Scholar
  23. 23.
    Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Biochem Biotechnol 56:17–34Google Scholar
  24. 24.
    Liu ZL, Slininger PJ, Gorsich SW (2005) Enhanced biotransformation of furfural and hydrolxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121–124:451–460CrossRefPubMedGoogle Scholar
  25. 25.
    Martin C, Marcet M, Almazan O, Jonsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol 98:1767–1773CrossRefPubMedGoogle Scholar
  26. 26.
    Wyman CE, Spindler DD, Grohmann K (1992) Simultaneous saccharification and fermentation of several lignocellulosic feedstocks to fuel ethanol. Biomass Bioenerg. 3:301–307CrossRefGoogle Scholar
  27. 27.
    Rosgaard L, Andric P, Dam-Johansen K, Pedersen S, Meyer AS (2007) Effects of substrate loading on enzymatic hydrolysis and viscosity of pretreated barley straw. Appl Biochem Biotechnol 143:27–40CrossRefPubMedGoogle Scholar
  28. 28.
    Rudolf A, Alkasrawi M, Zacchi G, Liden G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37:195–204CrossRefGoogle Scholar
  29. 29.
    Meinander NQ, Boels I, Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68:79–87CrossRefGoogle Scholar
  30. 30.
    Tomás-Pejó E, Oliva JM, González A, Ballesteros I, Ballesteros M (2009) Bioethanol production from wheat straw by thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel 88:2142–2147CrossRefGoogle Scholar
  31. 31.
    Verduyn C, Postma E, Scheffers A, Van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:95–403Google Scholar
  32. 32.
    NREL. National Renewable Energy Laboratory (2007) Chemical Analysis and Testing Laboratory Analytical Procedures. Golden, COGoogle Scholar
  33. 33.
    Hendriks ATW, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18CrossRefPubMedGoogle Scholar
  34. 34.
    Wu M, Chang K, Gregg DJ, Boussaid A, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwood. Appl Biochem Biotechnol 77–79:47–54CrossRefGoogle Scholar
  35. 35.
    Alfani A, Gallifuoco F, Saporosi A, Spera A, Cantarella M (2000) Comparison of SHF and SSF process for the bioconversion of steam-exploded wheat straw. J Ind Microbiol Biotechnol 25:184–192CrossRefGoogle Scholar
  36. 36.
    Ballesteros I, Oliva JM, Negro MJ, Manzanares P, Ballesteros M (2002) Enzymic hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at different particule sizes. Process Biochem 38:187–192CrossRefGoogle Scholar
  37. 37.
    Kabel MA, Bos G, Zeevalking J, Voragen AGJ, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042CrossRefPubMedGoogle Scholar
  38. 38.
    Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMedGoogle Scholar
  39. 39.
    García-Aparicio M, Ballesteros I, González A, Oliva JM, Ballesteros M, Negro MJ (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288CrossRefPubMedGoogle Scholar
  40. 40.
    Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998CrossRefPubMedGoogle Scholar
  41. 41.
    Bakker BM, Overkamp KM, Van Maris AJA, Kottler P, Luttik MAH, Van Dijken JP, Pronk JT (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:15–37CrossRefPubMedGoogle Scholar
  42. 42.
    Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218CrossRefPubMedGoogle Scholar
  43. 43.
    Zaldivar J, Roca C, Le Foll C, Hahn-Hägerdal B, Olsson L (2005) Ethanolic fermentation of acid-treated starch industry effluents by recombinant Saccharomyces cerevisiae strains. Bioresour Technol 96:1670–1676CrossRefPubMedGoogle Scholar
  44. 44.
    Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5CrossRefPubMedGoogle Scholar
  45. 45.
    Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–169PubMedGoogle Scholar
  46. 46.
    Helle S, Cameron D, Lam J, White B, Duff S (2003) Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineering strain of S cerevisiae. Enzyme Microb Technol 33:786–792CrossRefGoogle Scholar
  47. 47.
    Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131CrossRefPubMedGoogle Scholar
  48. 48.
    Ballesteros I, Oliva JM, Navarro AA, González A, Carrasco J, Ballesteros M (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotechnol 84–86:97–110CrossRefPubMedGoogle Scholar
  49. 49.
    Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788PubMedGoogle Scholar
  50. 50.
    Olsson L, Soerensen HR, Dam BP, Christensen H, Krogh KM, Meyer AS (2006) Separate and simultaneous enzymatic hydrolysis and fermentation of wheat hemicellulose with recombinant xylose utilizing Saccharomyces cerevisiae. Appl Biochem Biotechnol 129–132:117–129CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  • E. Tomás-Pejó
    • 1
    • 2
  • M. Ballesteros
    • 1
  • J. M. Oliva
    • 1
  • L. Olsson
    • 2
  1. 1.CIEMAT, Biomass UnitMadridSpain
  2. 2.Department of Chemical and Biological EngineeringIndustrial Biotechnology, Chalmers University of TechnologyGöteborgSweden

Personalised recommendations