Journal of Industrial Microbiology & Biotechnology

, Volume 37, Issue 10, pp 1053–1059

Production and single-step purification of Brugia malayi abundant larval transcript (ALT-2) using hydrophobic interaction chromatography

Original Paper


Abundant larval transcript (ALT), a novel filarial protein, has been shown to have great potential as a vaccine in the prevention of human lymphatic filariasis. In this study, we report a method for the production of recombinant ALT-2 protein, expressed in the cytoplasm of bacterium Escherichia coli in soluble form and purification in a single step using hydrophobic interaction chromatography (HIC). Fermentation was done by continuous fed-batch methodology with dissolved oxygen (DO)-controlled feed addition. The culture was induced with 1 mM isopropyl-β-d-thiogalactopyranoside (IPTG). Up to 9 g/l dry cell weight (DCW) of biomass was obtained from 1.6 l of Luria–Bertani (LB) broth in a bench-scale reactor. Around 200 mg/l of purified ALT-2 with a yield of about 60% was obtained. This is almost a 2.5-fold increase in final protein yield compared to purification using immobilized metal affinity chromatography (IMAC).


Recombinant vaccine antigen Lymphatic filariasis Abundant larval transcript (ALT-2) Fed-batch DO-stat Hydrophobic interaction chromatography (HIC) 


  1. 1.
    Anand SB, Murugan V, Prabhu PR, Anandharaman V, Reddy MV, Kaliraj P (2008) Comparison of immunogenicity, protective efficacy of single and cocktail DNA vaccine of Brugia malayi abundant larval transcript (ALT-2) and thioredoxin peroxidase (TPX) in mice. Acta Trop 107(2):106–112CrossRefPubMedGoogle Scholar
  2. 2.
    Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10(5):411–421CrossRefPubMedGoogle Scholar
  3. 3.
    Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99CrossRefGoogle Scholar
  4. 4.
    Chen Q, Bentley WE, Weigand WA (1995) Optimization for a recombinant E. coli fed-batch fermentation. Appl Biochem Biotech 51(52):449–461CrossRefGoogle Scholar
  5. 5.
    Cserjan-Puschmann M, Kramer W, Duerrschmid E, Striedner G, Bayer K (1999) Metabolic approaches for the optimisation of recombinant fermentation processes. Appl Microbiol Biotechnol 53:43–50CrossRefPubMedGoogle Scholar
  6. 6.
    Geng X, Chang X (1992) High-performance hydrophobic interaction chromatography as a tool for protein refolding. J Chromatogr 599:185–194CrossRefGoogle Scholar
  7. 7.
    Geng X, Bai Q, Zhang Y, Li X, Wu D (2004) Refolding and purification of interferon-gamma in industry by hydrophobic interaction chromatography. J Biotechnol 113:137–149CrossRefPubMedGoogle Scholar
  8. 8.
    Gnanasekar M, Rao KVN, He Y-X, Mishra PK, Nutman TB, Kaliraj P, Ramaswamy K (2004) Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi. Infect Immun 4707–4715. doi: 10.1128/IAI.72.8.4707-4715.2004
  9. 9.
    Gregory WF, Atmadja AK, Allen JE, Maizels RM (2000) The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis. Infect Immun 4174–4179Google Scholar
  10. 10.
    Harlow E, David L (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  11. 11.
    Hettwer S, Sterner R (2002) A novel tryptophan synthase beta-subunit from the hyperthermophile Thermotoga maritima. Quaternary structure, steady-state kinetics, and putative physiological role. J Biol Chem 277(10):8194–8201CrossRefPubMedGoogle Scholar
  12. 12.
    Jenney FE Jr, Adams MW (2008) The impact of extremophiles on structural genomics (and vice versa). Extremophiles 12(1):39–50CrossRefPubMedGoogle Scholar
  13. 13.
    Joseph GT, Huima T, Lustigman S (1998) Characterization of an Onchocerca volvulus L3-specific larval antigen, Ov-ALT-1. Mol Biochem Parasitol 96:177–183. doi:10.1016/S0166-6851(98)00094-2 CrossRefPubMedGoogle Scholar
  14. 14.
    Kopetzki E, Schumacher G, Buckel P (1989) Control of formation of active soluble or inactive insoluble baker’s yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Mol Gen Genet 216(1):149–155CrossRefPubMedGoogle Scholar
  15. 15.
    Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132CrossRefPubMedGoogle Scholar
  16. 16.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  17. 17.
    Madurawe RD, Chase TE, Tsao EI, Bentley WE (2000) A recombinant lipoprotein antigen against Lyme disease expressed in E. coli: fermentor operating strategies for improved yield. Biotechnol Prog 16:571–576CrossRefPubMedGoogle Scholar
  18. 18.
    Maizels RM, Gomez-Escobar N, Gregory WF, Murray J, Zang X (2001) Immune evasion genes from filarial nematodes. Int J Parasitol 31(9):889–898CrossRefPubMedGoogle Scholar
  19. 19.
    Pasamontes L, Denise E, Kurt B (1986) Production of monoclonal and monospecific antibodies against non-capsid proteins of poliovirus. J Gen Virol 67:2415–2422CrossRefPubMedGoogle Scholar
  20. 20.
    Ramachandran S, Kumar MP, Reddy MVR, Harinath BC, Nutman TB, Kaliraj P, McCarthy J (2004) The larval specific lymphatic filarial ALT-2: induction of protection using protein or DNA vaccination. Microbiol Immunol 48(12):945–955PubMedGoogle Scholar
  21. 21.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  22. 22.
    Thirugnanam S, Pandiaraja P, Ramaswamy K, Murugan V, Gnanasekar M, Nandakumar K, Reddy MV, Kaliraj P (2007) Brugia malayi: comparison of protective immune responses induced by Bm-alt-2 DNA, recombinant Bm-ALT-2 protein and prime-boost vaccine regimens in a jird model. Exp Parasitol 116(4):483–491CrossRefPubMedGoogle Scholar
  23. 23.
    Vanam U, Pandey V, Prabhu PR, Dakshinamurthy G, Reddy MV, Kaliraj P (2009) Evaluation of immunoprophylactic efficacy of Brugia malayi transglutaminase (BmTGA) in single and multiple antigen vaccination with BmALT-2 and BmTPX for human lymphatic filariasis. Am J Trop Med Hyg 80(2):319–324PubMedGoogle Scholar
  24. 24.
    Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23(6):316–320CrossRefPubMedGoogle Scholar
  25. 25.
    World Health Organization (2006) Global programme to eliminate lymphatic filariasis: progress report on mass drug administrations in 2005. Wkly Epidemiol Rec 22:221–232Google Scholar
  26. 26.
    Yamane T, Shimizu S (1984) Fed-batch techniques in microbial processes. Adv Biochem Eng 3:147–194Google Scholar
  27. 27.
    Yano T, Kobayashi T, Shimizu S (1978) Fed-batch culture of methanol-utilizing bacterium with DO-stat. J Ferment Technol 56:416–420Google Scholar
  28. 28.
    Yee L, Blanch HW (1992) Recombinant protein expression in high cell density fed-batch cultures of E. coli. Bio/Technology 10:1550–1556CrossRefPubMedGoogle Scholar
  29. 29.
    Yee L, Blanch HW (1993) Recombinant trypsin production in high cell density fed-batch cultures in Escherichia coli. Biotechnol Bioeng 41(8):781–790CrossRefPubMedGoogle Scholar
  30. 30.
    Zanette D, Dundon W, Soffientini A, Sottani C, Marinelli F, Akeson A, Sarubbi E (1998) Human IL-1 receptor antagonist from Escherichia coli: large-scale microbial growth and protein purification. J Biotechnol 64:187–196CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  1. 1.Centre for BiotechnologyAnna UniversityChennaiIndia

Personalised recommendations