Journal of Industrial Microbiology & Biotechnology

, Volume 37, Issue 9, pp 943–952

Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR

Original Paper

Abstract

Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 ± 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2/NH4+ ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m3 day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.

Keywords

Anammox CSTR FISH SEM Nitrogen removal 

References

  1. 1.
    Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16:177–184CrossRefGoogle Scholar
  2. 2.
    van de Graaf AA, de Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor. Microbiology 142:2187–2196CrossRefGoogle Scholar
  3. 3.
    Strous M, van Gerven E, Kuenen JG, Jetten MSM (1997) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (Anammox) sludge. Appl Environ Microbiol 63:2446–2448PubMedGoogle Scholar
  4. 4.
    Broda E (1977) Two kinds of lithotrophs missing in nature. Zantralbl Mikrobiol 17:491–493CrossRefGoogle Scholar
  5. 5.
    Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326CrossRefPubMedGoogle Scholar
  6. 6.
    Jetten MSM, Sliekers AO, Kuypers MMM et al (2003) Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria. Appl Microbiol Biotechnol 63:107–114CrossRefPubMedGoogle Scholar
  7. 7.
    Dalsgaarda T, Thamdrupb B, Canfield DE (2005) Anaerobic ammonium oxidation (Anammox) in the marine environment. Res Microbiol 156:457–464CrossRefGoogle Scholar
  8. 8.
    Innerebner G, Insam H, Franke-Whittle IH, Wett B (2007) Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia oxidation. Syst Appl Microbiol 30:408–412CrossRefPubMedGoogle Scholar
  9. 9.
    van der Star WRL, Wiebe R, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, van Loosdrech MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163CrossRefPubMedGoogle Scholar
  10. 10.
    Strous M, Kuenen JG, Fuerst JA, Wagner M, Jetten MSM (2002) The anammox case—a new experimental manifesto for microbiological eco-physiology. Antonie Van Leeuwenhoek 81:693–702CrossRefPubMedGoogle Scholar
  11. 11.
    Dapena-Mora A, Fernandez I, Campos JL, Mosquera-Corral A, Mendez R, Jetten MSM (2007) Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme Microb Technol 40:859–865CrossRefGoogle Scholar
  12. 12.
    Chamchoi N, Nitisoravut S (2007) Anammox enrichment from different conventional sludges. Chemosphere 66:2225–2232CrossRefPubMedGoogle Scholar
  13. 13.
    Wett B (2007) Development and implementation of a robust deammonification process. Water Sci Technol 56(7):81–88CrossRefPubMedGoogle Scholar
  14. 14.
    Dapena-Mora A, Campos JL, Mosquera-Corral A, Jetten MSM, Mendez R (2004) Stability of the Anammox process in a gas-lift reactor and a SBR. J Biotechnol 110:159–170CrossRefPubMedGoogle Scholar
  15. 15.
    van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM (2008) The membrane bioreactor: a novel tool to grow Anammox bacteria as free cells. Biotechnol Bioeng 101:268–294Google Scholar
  16. 16.
    Lopez H, Puig S, Ganigue R, Ruscalleda M, Balaguer MD, Colprim J (2008) Start-up and enrichment of a granular anammox SBR to treat high nitrogen load wastewaters. J Chem Technol Biotechnol 83:233–241CrossRefGoogle Scholar
  17. 17.
    Arrojo B, Figueroa M, Mosquera-Corral A, Campos JL, Méndez R (2008) Influence of gas flow-induced shear stress on the operation of the Anammox process in a SBR. Chemosphere 72:1687–1693CrossRefPubMedGoogle Scholar
  18. 18.
    Wang T, Zhang H, Yang F, Liu S, Fu Z, Chen H (2009) Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor. Bioresour Technol 100:2501–2506CrossRefPubMedGoogle Scholar
  19. 19.
    Tang CJ, Zheng P, Mahmood Q, Chen JW (2009) Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. J Ind Microbiol Biotechnol 36:1093–1100CrossRefPubMedGoogle Scholar
  20. 20.
    APHA, AWWA, WEF (1998) Standard methods for water and wastewater examination, 20th edn. American Public Health Association, WashingtonGoogle Scholar
  21. 21.
    Vazquez-Padin JR, Pozo MJ, Jarpa M, Figueroa M, Franco A, Mosquera-Corral A, Campos JL, Mendez R (2009) Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR. J Hazard Mater 166:336–341CrossRefPubMedGoogle Scholar
  22. 22.
    Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S (2007) Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res 41:1623–1634CrossRefPubMedGoogle Scholar
  23. 23.
    Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62:2156–2162PubMedGoogle Scholar
  24. 24.
    Fuerst JA (2004) Planctomycetes—a phylum of emerging interest for microbial evolution and ecology. WFCC Newslett 38:1–11Google Scholar
  25. 25.
    Watson SW, Valois FW, Waterbury JB (1986) The family Nitrobacteraceae. In: Starr MP, Stolp H, Truper HG, Balows A, Schlegel HG (eds) The prokaryotes—a handbook on habitats, isolation and identification of bacteria. Springer, Berlin, pp 1005–1022Google Scholar
  26. 26.
    Tran HT, Park YJ, Cho MK, Kim DJ, Ahn DH (2006) Anaerobic ammonium oxidation process in an upflow anaerobic sludge blanket reactor with granular sludge selected from an anaerobic digester. Biotechnol Bioprocess Eng 11:199–204CrossRefGoogle Scholar
  27. 27.
    Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool to study very slowly growing micro-organisms. Appl Microbiol Biotechnol 50:589–596CrossRefGoogle Scholar
  28. 28.
    Bagchi S, Biswas R, Roychoudhury K, Nandy T (2009) Stable partial nitrification in an up-flow fixed bed bioreactor under oxygen limiting environment. Environ Eng Sci 26:1309–1318CrossRefGoogle Scholar
  29. 29.
    Schmidt I, Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol 167:106–111CrossRefGoogle Scholar
  30. 30.
    Strous M, van Gerven E, Zheng P, Kuenen JG, Jetten MSM (1997) Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Res 31:1955–1962CrossRefGoogle Scholar
  31. 31.
    Liu ST, Yang FL, Gong Z, Meng F, Chen H, Xue Y, Furukawa K (2008) Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresour Technol 99(15):6817–6825. doi:10.1016/j.biortech.2008.01.054 CrossRefPubMedGoogle Scholar
  32. 32.
    Szatkowska B, Cema G, Plaza E, Trela J, Hultman B (2007) A one-stage system with partial nitritation and Anammox processes in the moving-bed biofilm reactor. Water Sci Technol 55(8–9):19–26. doi:10.2166/wst.2007.237 PubMedGoogle Scholar
  33. 33.
    Vázquez-Padín J, Fernádez I, Figueroa M, Mosquera-Corral A, Campos JL, Méndez R (2009) Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature. Bioresour Technol 100:2988–2994CrossRefPubMedGoogle Scholar
  34. 34.
    van Dongen U, Jetten MSM, van Loosdrecht MC (2001) The Sharon-anammox process for treatment of ammonium rich wastewater. Water Sci Technol 44(1):153–160PubMedGoogle Scholar
  35. 35.
    Fux C, Böhler M, Huber P, Bruner I, Siegrist H (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (Anammox) in a pilot plant. J Biotechnol 99:295–306CrossRefPubMedGoogle Scholar
  36. 36.
    Guven D, van de Pas-Schoonen K, Schmid MC, Strous M, Jetten MS, Sozen S, Orhon D, Schmidt I (2004) Implementation of the Anammox process for improved nitrogen removal. J Environ Sci Health A 39:1729–1738CrossRefGoogle Scholar
  37. 37.
    Sliekers AO, Third KA, Abma W, Kuenen JG, Jetten MSM (2003) CANON and anammox in a gas-lift reactor. FEMS Microbiol Lett 218:339–344CrossRefPubMedGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2010

Authors and Affiliations

  1. 1.Wastewater Technology Division, National Environmental Engineering Research InstituteCouncil of Scientific and Industrial ResearchNagpurIndia

Personalised recommendations