Cellulases from Penicillium funiculosum: production, properties and application to cellulose hydrolysis

  • Aline Machado de Castro
  • Marcelle Lins de Albuquerque de Carvalho
  • Selma Gomes Ferreira Leite
  • Nei PereiraJr.Email author
Original Paper


The objective of this work is to investigate the utilization of two abundant agricultural residues in Brazil for the production and application of cellulolytic enzymes. Different materials obtained after pretreatment of sugarcane bagasse, as well as pure synthetic substrates, were considered for cellulase production by Penicillium funiculosum. The best results for FPase (354 U L−1) and β-glucosidase (1,835 U L−1) production were observed when sugarcane bagasse partially delignified cellulignin (PDC) was used. The crude extract obtained from PDC fermentation was then partially characterized. Optimal temperatures for cellulase action ranged from 52 to 58°C and pH values of around 4.9 contributed to maximum enzyme activity. At 37°C, the cellulases were highly stable, losing less than 15% of their initial activity after 23 h of incubation. There was no detection of proteases in the P. funiculosum extract, but other hydrolases, such as endoxylanases, were identified (147 U L−1). Finally, when compared to commercial preparations, the cellulolytic complex from P. funiculosum showed more well-balanced amounts of β-glucosidase, endo- and exoglucanase, resulting in the desired performance in the presence of a lignocellulosic material. Cellulases from this filamentous fungus had a higher glucose production rate (470 mg L−1 h−1) when incubated with corn cob than with Celluclast®, GC 220® and Spezyme® (312, 454 and 400 mg L−1 h−1, respectively).


Cellulases Endoglucanase β-Glucosidase Sugarcane bagasse Penicillium funiculosum 



To Dr. Alexandre Soares dos Santos, Marcela C. Ferreira, Juliana C. Cruz, Daniele F. Carvalho, Kelly C. N. R. Pedro and Roberto Maeda, for their technical assistance. We are also grateful to the Brazilian Council for Research (CNPq), the Rio de Janeiro State Foundation for Science and Technology (FAPERJ), and the Brazilian Petroleum Company (PETROBRAS) for financial support.


  1. 1.
    IBGE (2008) SIDRA-Sistema de Recuperação Automática., accessed Nov 2008
  2. 2.
    CONAB (2008) Companhia Nacional de Abastecimento., accessed Nov 2008
  3. 3.
    Carvalho FC (1992) Disponibilidade de resíduos agroindustriais e do beneficiamento de produtos agrícolas. Informações Econômicas 22(12):31–46Google Scholar
  4. 4.
    FAOSTAT (2008) Homepage., accessed Nov 2008
  5. 5.
    BNDES (2007) Ampliação da produção de etanol e co-geração de energia elétrica., accessed Oct 2007
  6. 6.
    SUN JX, Sun XF, Zhao H, Sun RC (2004) Isolation and characterization of cellulose from sugarcane bagasse. Pol Degr Stab 84:331–339. doi: 10.1016/j.polymdegradstab.2004.02.008 CrossRefGoogle Scholar
  7. 7.
    Zhang YP, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88(7):797–824. doi: 10.1002/bit.20282 CrossRefPubMedGoogle Scholar
  8. 8.
    Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577. doi: 10.1128/MMBR.66.3.506-577.2002 CrossRefPubMedGoogle Scholar
  9. 9.
    Camassola M, Bittencourt RS, Shenen NT, Andreaus J, Dillon AJP (2004) Characterization of the cellulase complex of Penicillium echinulatum. Biocat Biotrans 22(5/6):391–396. doi: 10.1080/10242420400024532 CrossRefGoogle Scholar
  10. 10.
    Jorgensen H, Eriksson T, Borjesson J, Tjerneld F, Olsson L (2003) Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888. Enzyme Microb Technol 32:851–861. doi: 10.1016/j.enzmictec.2005.06.018 Google Scholar
  11. 11.
    Jorgensen H, Morkeberg A, Krogh KBR, Olsson L (2005) Production of cellulases and hemicellulases by three Penicillium species: effect of substrate and evaluation of cellulase adsorption by capillary electrophoresis. Enzyme Microb Technol 36:42–48. doi: 10.1016/j.enzmictec.2005.06.018 CrossRefGoogle Scholar
  12. 12.
    Jorgensen H, Olsson L (2006) Production of cellulases by Penicillium brasilianum IBT 20888–Effect of substrate on hydrolytic performance. Enzyme Microb Technol 38(3–4):381–390. doi: 10.1016/j.enzmictec.2005.06.018 CrossRefGoogle Scholar
  13. 13.
    Krogh KBR, Morkeberg A, Jorgensen H, Frisvad JC, Olsson L (2004) Screening genus Penicillium for producers of cellulolytic and xylanolytic enzymes. Appl Biochem Biotechnol 113–116:389–401. doi: 10.1385/ABAB:114:1-3:389 CrossRefPubMedGoogle Scholar
  14. 14.
    Van Wyk JPH (1999) Saccharification of paper products by cellulase from Penicillium funiculosum and Trichoderma reesei. Biom Bioen 16:239–242. doi: 10.1016/S0961-9534(98)00079-8 CrossRefGoogle Scholar
  15. 15.
    Bhat MK (2000) Cellulase and related enzymes in biotechnology. Biotechnol Adv 18:355–383. doi: 10.1016/S0734-9750(00)00041-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Godfrey T, West S (1996) Industrial enzymology, 2nd edn. Macmillan, LondonGoogle Scholar
  17. 17.
    Tolan JS, Foody B (1999) Cellulase from submerged fermentation. Adv Biochem Eng Biotechnol 65:41–67. doi: 10.1007/3-540-49194-5_3 Google Scholar
  18. 18.
    Kaar WE, Cool LG, Merriman MM, Brink DL (1991) The complete analysis of wood polysaccharides using HPLC. J Wood Chem Techn 11:447. doi: 10.1080/02773819108051086 Google Scholar
  19. 19.
    Szijártó N, Szengyel Z, Lidén G, Réczey K (2004) Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl Biochem Biotechnol 113–116:115–124. doi: 10.1385/ABAB CrossRefPubMedGoogle Scholar
  20. 20.
    Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59(2):257–268CrossRefGoogle Scholar
  21. 21.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31(3):426–428CrossRefGoogle Scholar
  22. 22.
    Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270. doi: 10.1016/0168-1656(92)90074-J CrossRefGoogle Scholar
  23. 23.
    Charney J, Tomarelli RM (1947) A colorimetric method for the determination of the proteolytic activity of duodenal juice. J Biol Chem 171(2):501–505Google Scholar
  24. 24.
    Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  25. 25.
    Mo H, Zhang X, Li Z (2004) Control of gas phase for enhanced cellulase production by Penicillium decumbens in solid-state culture. Process Biochem 39:1293–1297. doi: 10.1016/S0032-9592(03)00291-7 CrossRefGoogle Scholar
  26. 26.
    Aiello C, Ferrer A, Ledesma A (1996) Effect of alkaline treatments at various temperatures on cellulase and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414. Bioresour Technol 57:13–18. doi: 10.1016/0960-8524(96)00012-0 CrossRefGoogle Scholar
  27. 27.
    Camassola M, Dillon AJP (2009) Biological pretreatment of sugar cane bagasse for the production of cellulases and xylanases by Penicillium echinulatum. Ind Crops Prod 29:642–647. doi: 10.1016/j.indcrop.2008.09.008 CrossRefGoogle Scholar
  28. 28.
    Kádár Z, Szengyel Z, Réczey K (2004) Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind Crop Prod 20:103–110. doi: 10.1016/j.indcrop.2003.12.015 CrossRefGoogle Scholar
  29. 29.
    Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Syneristic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of and engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70(2):1207–1212. doi: 10.1128/AEM.70.2.1207-1212.2004 CrossRefPubMedGoogle Scholar
  30. 30.
    Tanaka T, Hoshina M, Tanabe S, Sakai K, Ohtsubo S, Taniguchi M (2006) Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresour Technol 97(2):211–217. doi: 10.1016/j.biortech.2005.02.025 Google Scholar
  31. 31.
    Cavaco-Paulo A (1998) Mechanism of cellulase action in textile processes. Carbohydr Polym 37:273–277. doi: 10.1016/S0144-8617(98)00070-8 CrossRefGoogle Scholar

Copyright information

© Society for Industrial Microbiology 2009

Authors and Affiliations

  • Aline Machado de Castro
    • 1
  • Marcelle Lins de Albuquerque de Carvalho
    • 2
  • Selma Gomes Ferreira Leite
    • 2
  • Nei PereiraJr.
    • 2
    Email author
  1. 1.PETROBRAS-CENPES-Centro de Pesquisas e Desenvolvimento, Gerência de Energias RenováveisRio de JaneiroBrazil
  2. 2.Departamento de Engenharia Bioquímica, Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations